-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaterials.py
404 lines (333 loc) · 18.5 KB
/
materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from __future__ import division, print_function
import numpy as np
from openmdao.api import Component
def norm(vec):
return np.sqrt(np.sum(vec**2))
def unit(vec):
return vec / norm(vec)
def getQ(E1,E2,G12,nu12,ang):
ang = ang/180*np.pi
# T = lambda t:np.array([[np.cos(t)**2,np.sin(t)**2,2*np.sin(t)*np.cos(t)],
# [np.sin(t)**2,np.cos(t)**2,-2*np.sin(t)*np.cos(t)],
# [-np.sin(t)*np.cos(t),np.sin(t)*np.cos(t),np.cos(t)**2 - np.sin(t)**2]],dtype=complex)
S = np.array([[1/E1,-nu12/E1,0],
[-nu12/E1,1/E2,0],
[0,0,1/G12]],dtype=complex)
Q = np.linalg.inv(S)
C = np.cos(ang)
S = np.sin(ang)
Qbar = np.zeros((3,3),dtype=complex)
Qbar[0,0] = Q[0,0]*C**4 + Q[1,1]*S**4 + 2*(Q[0,1] + 2*Q[2,2])*S**2*C**2
Qbar[0,1] = (Q[0,0] + Q[1,1] - 4*Q[2,2])*S**2*C**2 + Q[0,1]*(C**4 + S**4)
Qbar[1,1] = Q[0,0]*S**4 + Q[1,1]*C**4 + 2*(Q[0,1] + 2*Q[2,2])*S**2*C**2
Qbar[0,2] = (Q[0,0] - Q[0,1] - 2*Q[2,2])*C**3*S - (Q[1,1] - Q[0,1] - 2*Q[2,2])*C*S**3
Qbar[1,2] = (Q[0,0] - Q[0,1] - 2*Q[2,2])*C*S**3 - (Q[1,1] - Q[0,1] - 2*Q[2,2])*C**3*S
Qbar[2,2] = (Q[0,0] + Q[1,1] - 2*Q[0,1] - 2*Q[2,2])*S**2*C**2 + Q[2,2]*(S**4 + C**4)
Qbar[2,1] = Qbar[1,2]
Qbar[1,0] = Qbar[0,1]
Qbar[2,0] = Qbar[0,2]
# Qbar = np.linalg.inv(T(ang)).dot(Q)
# Qbar = Qbar.dot(np.linalg.inv(T(ang)).T)
return Qbar
def wingbox_props(chord, sparthickness, skinthickness, data_x_upper, data_x_lower, data_y_upper, data_y_lower, twist=0.):
# Scale data points with chord
data_x_upper = chord * data_x_upper
data_y_upper = chord * data_y_upper
data_x_lower = chord * data_x_lower
data_y_lower = chord * data_y_lower
# Compute enclosed area for torsion constant
# This currently does not change with twist
A_enc = 0
for i in range(data_x_upper.size-1):
A_enc += (data_x_upper[i+1] - data_x_upper[i]) * (data_y_upper[i+1] + data_y_upper[i] - skinthickness ) / 2 # area above 0 line
A_enc += (data_x_lower[i+1] - data_x_lower[i]) * (-data_y_lower[i+1] - data_y_lower[i] - skinthickness ) / 2 # area below 0 line
A_enc -= (data_y_upper[0] - data_y_lower[0]) * sparthickness / 2 # area of spars
A_enc -= (data_y_upper[-1] - data_y_lower[-1]) * sparthickness / 2 # area of spars
# Compute perimeter to thickness ratio for torsion constant
# This currently does not change with twist
p_by_t = 0
for i in range(data_x_upper.size-1):
p_by_t += ((data_x_upper[i+1] - data_x_upper[i])**2 + (data_y_upper[i+1] - data_y_upper[i])**2)**0.5 / skinthickness # length / thickness of caps
p_by_t += ((data_x_lower[i+1] - data_x_lower[i])**2 + (data_y_lower[i+1] - data_y_lower[i])**2)**0.5 / skinthickness # length / thickness of caps
p_by_t += (data_y_upper[0] - data_y_lower[0] - skinthickness) / sparthickness # length / thickness of spars
p_by_t += (data_y_upper[-1] - data_y_lower[-1] - skinthickness) / sparthickness # length / thickness of spars
# Torsion constant
J = 4 * A_enc**2 / p_by_t
# Rotate the wingbox
theta = twist
rot_mat = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]],dtype=complex)
data_x_upper_2 = data_x_upper.astype(complex)
data_y_upper_2 = data_y_upper.astype(complex)
data_x_lower_2 = data_x_lower.astype(complex)
data_y_lower_2 = data_y_lower.astype(complex)
for i in range(data_x_upper.size):
data_x_upper_2[i] = rot_mat[0,0] * data_x_upper[i] + rot_mat[0,1] * data_y_upper[i]
data_y_upper_2[i] = rot_mat[1,0] * data_x_upper[i] + rot_mat[1,1] * data_y_upper[i]
data_x_lower_2[i] = rot_mat[0,0] * data_x_lower[i] + rot_mat[0,1] * data_y_lower[i]
data_y_lower_2[i] = rot_mat[1,0] * data_x_lower[i] + rot_mat[1,1] * data_y_lower[i]
data_x_upper = data_x_upper_2.copy()
data_y_upper = data_y_upper_2.copy()
data_x_lower = data_x_lower_2.copy()
data_y_lower = data_y_lower_2.copy()
# Compute area moment of inertia about x axis
# First compute centroid and area
first_moment_area_upper = 0
upper_area = 0
first_moment_area_lower = 0
lower_area = 0
for i in range(data_x_upper.size-1):
first_moment_area_upper += ((data_y_upper[i+1] + data_y_upper[i]) / 2 - (skinthickness/2) ) * skinthickness * (data_x_upper[i+1] - data_x_upper[i])
upper_area += skinthickness * (data_x_upper[i+1] - data_x_upper[i])
first_moment_area_lower += ((data_y_lower[i+1] + data_y_lower[i]) / 2 + (skinthickness/2) ) * skinthickness * (data_x_lower[i+1] - data_x_lower[i])
lower_area += skinthickness * (data_x_lower[i+1] - data_x_lower[i])
area = upper_area + lower_area
centroid = (first_moment_area_upper + first_moment_area_lower) / area
# Then compute area moment of inertia for upward bending
# This is calculated using derived analytical expression assuming linear interpolation between airfoil data points
I_horiz = 0
for i in range(data_x_upper.size-1): # upper surface
a = (data_y_upper[i] - data_y_upper[i+1]) / (data_x_upper[i] - data_x_upper[i+1])
b = (data_y_upper[i+1] - data_y_upper[i] + skinthickness) / 2
x2 = data_x_upper[i+1] - data_x_upper[i]
I_horiz += 2 * ((1./12. * a**3 * x2**4 + 1./3. * a**2 * x2**3 * b + 1./2. * a * x2**2 * b**2 + 1./3. * b**3 * x2))
I_horiz += x2 * skinthickness * ((data_y_upper[i] + data_y_upper[i+1])/2 - skinthickness/2 - centroid)**2
# Compute area moment of inertia about y axis
for i in range(data_x_lower.size-1): # lower surface
a = -(data_y_lower[i] - data_y_lower[i+1]) / (data_x_lower[i] - data_x_lower[i+1])
b = (-data_y_lower[i+1] + data_y_lower[i] + skinthickness) / 2
x2 = data_x_lower[i+1] - data_x_lower[i]
I_horiz += 2 * ((1./12. * a**3 * x2**4 + 1./3. * a**2 * x2**3 * b + 1./2. * a * x2**2 * b**2 + 1./3. * b**3 * x2))
I_horiz += x2 * skinthickness * ((-data_y_lower[i] - data_y_lower[i+1])/2 - skinthickness/2 + centroid)**2
# Contribution from the forward spar
I_horiz += 1./12. * sparthickness * (data_y_upper[0] - data_y_lower[0] - 2 * skinthickness)**3 + sparthickness * (data_y_upper[0] - data_y_lower[0] - 2 * skinthickness) * ((data_y_upper[0] + data_y_lower[0]) / 2 - centroid)**2
# Contribution from the rear spar
I_horiz += 1./12. * sparthickness * (data_y_upper[-1] - data_y_lower[-1] - 2 * skinthickness)**3 + sparthickness * (data_y_upper[-1] - data_y_lower[-1] - 2 * skinthickness) * ((data_y_upper[-1] + data_y_lower[-1]) / 2 - centroid)**2
# Compute area moment of inertia for backward bending
I_vert = 0
first_moment_area_left = (data_y_upper[0] - data_y_lower[0]) * sparthickness * (data_x_upper[0] + sparthickness / 2)
first_moment_area_right = (data_y_upper[-1] - data_y_lower[-1]) * sparthickness * (data_x_upper[-1] - sparthickness / 2)
centroid_Ivert = (first_moment_area_left + first_moment_area_right) / \
( ((data_y_upper[0] - data_y_lower[0]) + (data_y_upper[-1] - data_y_lower[-1])) * sparthickness)
I_vert += 1./12. * (data_y_upper[0] - data_y_lower[0]) * sparthickness**3 + (data_y_upper[0] - data_y_lower[0]) * sparthickness * (centroid_Ivert - (data_x_upper[0] + sparthickness/2))**2
I_vert += 1./12. * (data_y_upper[-1] - data_y_lower[-1]) * sparthickness**3 + (data_y_upper[-1] - data_y_lower[-1]) * sparthickness * (data_x_upper[-1] - sparthickness/2 - centroid_Ivert)**2
# Add contribution of skins
I_vert += 2 * ( 1./12. * skinthickness * (data_x_upper[-1] - data_x_upper[0] - 2 * sparthickness)**3 + skinthickness * (data_x_upper[-1] - data_x_upper[0] - 2 * sparthickness) * (centroid_Ivert - (data_x_upper[-1] + data_x_upper[0]) / 2)**2 )
area_spar = ((data_y_upper[0] - data_y_lower[0] - 2 * skinthickness) + (data_y_upper[-1] - data_y_lower[-1] - 2 * skinthickness)) * sparthickness
area += area_spar
# Distances for calculating max bending stresses (KS function used)
ks_rho = 500. # Hard coded, see Martins and Poon 2005 for more
fmax_upper = np.max(data_y_upper)
htop = fmax_upper + 1 / ks_rho * np.log(np.sum(np.exp(ks_rho * (data_y_upper - fmax_upper)))) - centroid
fmax_lower = np.max(-data_y_lower)
hbottom = fmax_lower + 1 / ks_rho * np.log(np.sum(np.exp(ks_rho * (-data_y_lower - fmax_lower)))) + centroid
hleft = centroid_Ivert - data_x_upper[0]
hright = data_x_upper[-1] - centroid_Ivert
return I_horiz, I_vert, J, area, A_enc, htop, hbottom, hleft, hright, area_spar
def getModuli(chord, sparthickness, skinthickness, data_x_upper, data_x_lower, data_y_upper, data_y_lower, theta):
# Scale data points with chord
data_x_upper = chord * data_x_upper
data_y_upper = chord * data_y_upper
data_x_lower = chord * data_x_lower
data_y_lower = chord * data_y_lower
avg_x_dist = (data_x_upper[-1] - data_x_upper[0] + data_x_lower[-1] - data_x_lower[0])/2 - sparthickness
avg_y_dist = (data_y_upper[0] - data_y_lower[0] + data_y_upper[-1] - data_y_lower[-1])/2 - skinthickness
########## Tim's Composites Data ###########
E1_skin = 117.9E9
E2_skin = 9.7E9
G12_skin = 4.8E9
nu12_skin = 0.34
E1_spar = 62.1E9
E2_spar = 62.1E9
G12_spar = 5E9
nu12_spar = 0.045
fv_skin = np.array([0.625,0.125,0.125,0.125],dtype=complex)
fv_spar = np.array([0.125,0.375,0.375,0.125],dtype=complex)
ang_spar = np.array([0,45,-45,90],dtype=complex)
ang_skin = ang_spar + theta # theta is desvar'
######### Aluminum ##################
# E1_skin = 73.1e9
# E2_skin = E1_skin
# G12_skin = 30.e9
# nu12_skin = E1_skin/(2*G12_skin) - 1
# E1_spar = E1_skin
# E2_spar = E2_skin
# G12_spar = G12_skin
# nu12_spar = nu12_skin
# fv_skin = np.array([0.25,0.25,0.25,0.25],dtype=complex)
# fv_spar = np.array([0.25,0.25,0.25,0.25],dtype=complex)
# ang_spar = np.array([0,45,-45,90],dtype=complex)
# ang_skin = ang_spar + theta # theta is desvar'
########## Verification Data ###########
# E1_skin = 20.59E6# * 6894.76
# E2_skin = 1.42E6# * 6894.76
# G12_skin = 0.89E6# * 6894.76
# nu12_skin = 0.42
# E1_spar = E1_skin
# E2_spar = E2_skin
# G12_spar = G12_skin
# nu12_spar = nu12_skin
# fv_skin = np.array([0.5,0.5],dtype=complex)
# fv_spar = np.array([0.5,0.5],dtype=complex)
# t = 0
# ang_spar = np.array([-1,1],dtype=complex) * t
# ang_skin = np.array([1,1],dtype=complex) * t
# ang_spar = np.array([0,90],dtype=complex)
# ang_skin = np.array([0,90],dtype=complex)
############# PLATE DATA #####################
# E1_skin = 141.0E9
# E2_skin = 8.96E9
# G12_skin = 4.69E9
# nu12_skin = 0.316
# E1_spar = E1_skin
# E2_spar = E2_skin
# G12_spar = G12_skin
# nu12_spar = nu12_skin
# fv_skin = np.array([1.],dtype=complex)
# fv_spar = np.array([1.],dtype=complex)
# t = 30.
# ang_spar = np.array([1],dtype=complex) * t
# ang_skin = np.array([1],dtype=complex) * t
Qavg_skin = np.zeros((3,3),dtype=complex)
Qavg_spar = np.zeros((3,3),dtype=complex)
nlayer = np.size(ang_skin)
for ilayer in range(nlayer):
Q_spar = getQ(E1_spar,E2_spar,G12_spar,nu12_spar,ang_spar[ilayer])
Q_skin = getQ(E1_skin,E2_skin,G12_skin,nu12_skin,ang_skin[ilayer])
Qavg_skin += Q_skin*fv_skin[ilayer]
Qavg_spar += Q_spar*fv_spar[ilayer]
Al = Qavg_skin*skinthickness
Au = Al
Aeff_skin = Al + Au
Beff_skin = (avg_y_dist/2) * Au - (avg_y_dist/2) * Al
Deff_skin = (avg_y_dist/2)**2 * Aeff_skin
Af = Qavg_spar * sparthickness
Ar = Af
Aeff_spar = Af + Ar
Beff_spar = (avg_x_dist/2) * Af - (avg_x_dist/2) * Ar
Deff_spar = (avg_x_dist/2)**2 * Aeff_spar
mat_skin = np.block([[Aeff_skin,Beff_skin],[Beff_skin,Deff_skin]])
matinv_skin = np.linalg.inv(mat_skin)
Ainv_skin = matinv_skin[0:3,0:3]
E_skin = 1/Ainv_skin[0,0]/(skinthickness*2)
G_skin = 1/Ainv_skin[2,2]/(skinthickness*2)
mat_spar = np.block([[Aeff_spar,Beff_spar],[Beff_spar,Deff_spar]])
matinv_spar = np.linalg.inv(mat_spar)
Ainv_spar = matinv_spar[0:3,0:3]
E_spar = 1/Ainv_spar[0,0]/(sparthickness*2)
G_spar = 1/Ainv_spar[2,2]/(sparthickness*2)
V_tot = avg_x_dist*skinthickness + avg_y_dist*sparthickness
V_skin = avg_x_dist*skinthickness/V_tot
V_spar = avg_y_dist*sparthickness/V_tot
E = E_spar*V_spar + E_skin*V_skin
G = G_spar*V_spar + G_skin*V_skin
Kbt_skin = 2 * avg_x_dist * Deff_skin[0,2]
Kbt_spar = 2 * avg_y_dist * Deff_spar[0,2]
Kbt = Kbt_spar*V_spar + Kbt_skin*V_skin
#Kbt = 2 * avg_x_dist * (Deff_skin[0,2] - Deff_skin[0,1]*Deff_skin[1,2]/Deff_skin[1,1])
#Kbt = Kbt_skin
return E, G, Kbt
class ComputeModuli(Component):
def __init__(self, surface):
super(ComputeModuli, self).__init__()
self.surface = surface
self.ny = surface['num_y']
self.data_x_upper = surface['data_x_upper']
self.data_x_lower = surface['data_x_lower']
self.data_y_upper = surface['data_y_upper']
self.data_y_lower = surface['data_y_lower']
self.add_param('nodes', val=np.ones((self.ny, 3), dtype=complex))
self.add_param('theta', val=0.)
self.add_param('chords_fem', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('sparthickness', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('skinthickness', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('Kbt', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('E', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('G', val=np.ones((self.ny - 1), dtype = complex))
self.deriv_options['type'] = 'cs'
self.deriv_options['step_size'] = 1.0e-6
self.deriv_options['step_calc'] = 'relative'
self.deriv_options['check_type'] = 'fd'
self.deriv_options['check_form'] = 'central'
self.deriv_options['check_step_size'] = 1.0e-6
self.deriv_options['check_step_calc'] = 'relative'
def solve_nonlinear(self, params, unknowns, resids):
self.x_gl = np.array([1, 0, 0], dtype=complex)
for i in range(self.ny - 1):
P0 = params['nodes'][i, :]
P1 = params['nodes'][i+1, :]
x_loc = unit(P1 - P0)
spar_ang = 180*(np.arccos(x_loc.dot(self.x_gl)))/np.pi - 90
theta = spar_ang - params['theta']
# local fibre angle is then theta - spar_ang where theta is the global fibre angle
# what about removing the z-component of x_loc (and normalizing it), then dotting with x_gl?
# x_loc_spar = x_loc.copy()
# x_loc_spar[2] = 0
# x_loc_spar = unit(x_loc_spar)
# spar_ang = np.rad2deg(np.arccos(x_loc_spar.dot(x_gl))) - 90
unknowns['E'][i],unknowns['G'][i],unknowns['Kbt'][i] = getModuli(params['chords_fem'][i],\
params['sparthickness'][i], params['skinthickness'][i],\
self.data_x_upper, self.data_x_lower, self.data_y_upper, self.data_y_lower,theta)
class MaterialsTube(Component):
"""
Compute geometric properties for a tube element.
The thicknesses are added to the interior of the element, so the
'radius' value is the outer radius of the tube.
Parameters
----------
radius : numpy array
Outer radii for each FEM element.
thickness : numpy array
Tube thickness for each FEM element.
Returns
-------
A : numpy array
Cross-sectional area for each FEM element.
Iy : numpy array
Area moment of inertia around the y-axis for each FEM element.
Iz : numpy array
Area moment of inertia around the z-axis for each FEM element.
J : numpy array
Polar moment of inertia for each FEM element.
"""
def __init__(self, surface):
super(MaterialsTube, self).__init__()
self.surface = surface
self.ny = surface['num_y']
self.mesh = surface['mesh']
name = surface['name']
self.data_x_upper = surface['data_x_upper']
self.data_x_lower = surface['data_x_lower']
self.data_y_upper = surface['data_y_upper']
self.data_y_lower = surface['data_y_lower']
# self.add_param('radius', val=np.ones((self.ny - 1)))
self.add_param('chords_fem', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('twist_fem', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('thickness', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('sparthickness', val=np.ones((self.ny - 1), dtype = complex))
self.add_param('skinthickness', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('A', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('A_enc', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('A_spar', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('Iy', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('Iz', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('J', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('htop', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('hbottom', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('hleft', val=np.ones((self.ny - 1), dtype = complex))
self.add_output('hright', val=np.ones((self.ny - 1), dtype = complex))
self.arange = np.arange((self.ny - 1))
self.deriv_options['type'] = 'cs'
self.deriv_options['step_size'] = 1.0e-10
self.deriv_options['step_calc'] = 'relative'
self.deriv_options['check_type'] = 'fd'
self.deriv_options['check_form'] = 'central'
self.deriv_options['check_step_size'] = 1.0e-8
self.deriv_options['check_step_calc'] = 'relative'
def solve_nonlinear(self, params, unknowns, resids):
for i in range(self.ny - 1):
unknowns['Iz'][i], unknowns['Iy'][i], unknowns['J'][i], unknowns['A'][i], unknowns['A_enc'][i],\
unknowns['htop'][i], unknowns['hbottom'][i], unknowns['hleft'][i], unknowns['hright'][i],\
unknowns['A_spar'][i] = \
wingbox_props(params['chords_fem'][i], params['sparthickness'][i], params['skinthickness'][i],\
self.data_x_upper, self.data_x_lower, self.data_y_upper, self.data_y_lower, -params['twist_fem'][i])