This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain.py
142 lines (114 loc) · 5.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import pickle as pkl
import random
import torch
import math
import json
import string
import logging
import numpy as np
from collections import Counter, defaultdict
from transformers import GPT2Tokenizer, AutoTokenizer
from metaicl.data import MetaICLData
from metaicl.model import MetaICLModel
from utils.data import load_data
def main(logger, args):
if args.gpt2.startswith("gpt2"):
tokenizer = GPT2Tokenizer.from_pretrained(args.gpt2)
else:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
batch_size = args.batch_size
max_length_per_example = 256
max_length = 256
if args.use_demonstrations:
max_length = min(max_length * args.k, 1024)
logger.info("batch_size=%d\tmax_length=%d\tmax_length_per_example=%d" % (
args.batch_size, max_length, max_length_per_example))
train_data = load_data(args.task, "train", args.k, seed=args.seed)
train_counter = Counter()
for dp in train_data:
train_counter[dp["task"]] += 1
if args.local_rank <= 0:
for k, v in train_counter.items():
logger.info("[Train] %s\t%d" % (k, v))
logger.info("%s on %s (%d train)" % (args.method, args.task, len(train_counter)))
if args.init_checkpoint is not None:
assert os.path.exists(args.init_checkpoint)
######### load tensorize data
metaicl_data = MetaICLData(logger, tokenizer, args.method, args.use_demonstrations,
args.test_k, max_length, max_length_per_example,
do_tensorize=args.do_tensorize,
tensorize_dir=args.tensorize_dir,
n_process=args.n_process, n_gpu=args.n_gpu, local_rank=args.local_rank)
metaicl_data.tensorize_for_training(train_data, keyword=args.task, seed=args.seed,
use_random_english_words=args.use_random_english_words)
if args.do_tensorize:
return
######## actual training part
random.seed(args.train_seed)
np.random.seed(args.train_seed)
torch.manual_seed(args.train_seed)
if torch.cuda.device_count() > 0:
torch.cuda.manual_seed_all(args.train_seed)
num_training_steps = args.num_training_steps
save_period = 5000
log_period = 5000
if args.no_masking:
metaicl_data.tensorized_inputs["token_type_ids"] = torch.ones_like(metaicl_data.tensorized_inputs["input_ids"])
metaicl_data.print_tensorized_example()
logger.info(args.out_dir)
if args.local_rank<=0 and not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
metaicl_model = MetaICLModel(logger, args.out_dir, args.fp16, args.local_rank)
metaicl_model.load(args.init_checkpoint, args.gpt2)
metaicl_model.to_device()
metaicl_model.setup_optimizer(args.optimization, num_training_steps, args.lr,
args.weight_decay, args.warmup_steps)
metaicl_model.parallel()
metaicl_model.train()
metaicl_model.do_train(metaicl_data, args.batch_size, num_training_steps, save_period, log_period)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--do_tensorize", default=False, action="store_true")
parser.add_argument("--tensorize_dir", type=str, default="tensorized")
parser.add_argument("--n_gpu", type=int, default=8)
parser.add_argument("--n_process", type=int, default=40)
parser.add_argument("--use_demonstrations", default=False, action="store_true")
parser.add_argument("--log_file", default=None, type=str)
parser.add_argument("--task", type=str, default="SST-2")
parser.add_argument("--k", type=int, default=16384)
parser.add_argument("--test_k", type=int, default=16)
parser.add_argument("--seed", type=int, default=100)
parser.add_argument("--train_seed", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-5)
parser.add_argument("--warmup_steps", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_training_steps", type=int, default=30000)
parser.add_argument("--init_checkpoint", type=str, default=None)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--no_masking", default=False, action="store_true")
parser.add_argument("--use_random_english_words", default=False, action="store_true")
parser.add_argument("--out_dir", type=str, default="checkpoints")
parser.add_argument("--method", type=str, default="direct", choices=["direct", "channel"])
parser.add_argument("--gpt2", type=str, default="gpt2-large")
parser.add_argument("--optimization", type=str, default="adamw")
parser.add_argument("--fp16", default=False, action="store_true")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
args = parser.parse_args()
handlers = [logging.StreamHandler()]
if args.log_file is not None:
handlers.append(logging.FileHandler(args.log_file))
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
handlers=handlers)
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
logger = logging.getLogger(__name__)
logger.info(args)
main(logger, args)