-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathutils.py
88 lines (74 loc) · 3.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple
import torch
from torch import Tensor
def _compute_var(query_samples: Tensor) -> Tuple[Tensor, Tensor]:
n_chains, n_samples = query_samples.shape[:2]
if n_chains > 1:
per_chain_avg = query_samples.mean(1)
b = n_samples * torch.var(per_chain_avg, dim=0)
else:
b = 0
w = torch.mean(torch.var(query_samples, dim=1), dim=0)
var_hat = (n_samples - 1) / n_samples * w + (1 / n_samples) * b
return w, var_hat
def split_r_hat(query_samples: Tensor) -> Optional[Tensor]:
"""
Computes r_hat given query_samples
:param query_samples: samples of shape (num_chains, iterations) from the posterior.
"""
n_chains, n_samples = query_samples.shape[:2]
if n_chains < 2:
return None
n_chains = n_chains * 2
n_samples = n_samples // 2
query_samples = torch.cat(torch.split(query_samples, n_samples, dim=1)[0:2])
w, var_hat = _compute_var(query_samples)
return torch.sqrt(var_hat / w)
def effective_sample_size(query_samples: Tensor) -> Tensor:
"""
Computes effective sample size given query_samples
:param query_samples: samples of shape (num_chains, iterations) from the posterior
"""
n_chains, n_samples, *query_dim = query_samples.shape
samples = query_samples - query_samples.mean(dim=1, keepdim=True)
samples = samples.transpose(1, -1)
# computes fourier transform (with padding)
padding = torch.zeros(samples.shape, dtype=samples.dtype)
padded_samples = torch.cat((samples, padding), dim=-1)
fvi = torch.rfft(padded_samples, 1, onesided=False)
# multiply by complex conjugate
acf = fvi.pow(2).sum(-1, keepdim=True)
# transform back to reals (with padding)
padding = torch.zeros(acf.shape, dtype=acf.dtype)
padded_acf = torch.cat((acf, padding), dim=-1)
rho_per_chain = torch.irfft(padded_acf, 1, onesided=False)
rho_per_chain = rho_per_chain.narrow(-1, 0, n_samples)
num_per_lag = torch.tensor(range(n_samples, 0, -1), dtype=samples.dtype)
rho_per_chain = torch.div(rho_per_chain, num_per_lag)
rho_per_chain = rho_per_chain.transpose(1, -1)
rho_avg = rho_per_chain.mean(dim=0)
w, var_hat = _compute_var(query_samples)
if n_chains > 1:
rho = 1 - ((w - rho_avg) / var_hat)
else:
rho = rho_avg / var_hat
rho[0] = 1
# reshape to 2d matrix where each row contains all samples for specific dim
rho_2d = torch.stack(torch.unbind(rho, dim=0), dim=-1).reshape(-1, n_samples)
rho_sum = torch.zeros(rho_2d.shape[0])
for i, chain in enumerate(torch.unbind(rho_2d, dim=0)):
total_sum = torch.tensor(0.0, dtype=samples.dtype)
for t in range(n_samples // 2):
rho_even = chain[2 * t]
rho_odd = chain[2 * t + 1]
if rho_even + rho_odd < 0:
break
else:
total_sum += rho_even + rho_odd
rho_sum[i] = total_sum
rho_sum = torch.reshape(rho_sum, query_dim)
return torch.div(n_chains * n_samples, -1 + 2 * rho_sum)