-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrna_analysis.py
159 lines (124 loc) · 5.75 KB
/
rna_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pandas as pd
import numpy as np
from bokeh.models import HoverTool
from bokeh.resources import CDN
from bokeh.embed import file_html
from bokeh.models import ColumnDataSource, FactorRange
from bokeh.plotting import figure
from bokeh.palettes import OrRd3,GnBu3,Spectral5,Spectral4
from bokeh.transform import factor_cmap
import os
os.environ["ARNIEFILE"] = f"arnie.conf"
from arnie.bpps import bpps
from arnie.mfe import mfe
target_columns = ['reactivity', 'deg_Mg_pH10',
'deg_pH10', 'deg_Mg_50C', 'deg_50C']
colorlist = ["red", "orange", "yellow", "green", "blue", "black"]
def preprocess_inputs(df, preprocess_columns):
input = np.transpose(
np.array(
df[preprocess_columns]
.applymap(lambda seq: list(seq))
.values
.tolist()
),
(0, 2, 1)
)
return input
def flag_correct_target(target_sequence,total_length):
return list(np.ones(len(target_sequence))) + list(np.zeros(total_length - len(target_sequence)))
def correct_target(target_sequence,total_length):
return list(target_sequence) + list(np.zeros(total_length - len(target_sequence)))
def get_unseq_data(df, target_columns):
df["seqpos"] = df.sequence.apply(lambda x: np.arange(1, 1 + len(x))) # get sequence based position info first.
flag_columns = []
for col in target_columns: # fill unavailable target infos with zeros.
df[col + '_flag'] = df.apply(lambda x: flag_correct_target(x[col], x["sequence_length"]), axis=1)
df[col] = df.apply(lambda x: correct_target(x[col], x["sequence_length"]), axis=1)
flag_columns.append(col + '_flag')
preprocess_columns = ['seqpos'] + ['sequence', 'structure', 'predicted_loop_type'] + target_columns + flag_columns
final_inputs = pd.DataFrame()
for value in df["sequence_length"].unique():
filter_ = df["sequence_length"] == value
inputs = preprocess_inputs(df.loc[filter_].copy(), preprocess_columns) # get processed data.
inputs = pd.DataFrame(inputs.reshape(-1, len(preprocess_columns)),
columns=preprocess_columns) # turn it into dataframe.
final_inputs = pd.concat([final_inputs, inputs], axis=0)
for col in ["seqpos"] + target_columns + flag_columns:
final_inputs[col] = pd.to_numeric(final_inputs[col]) # make sure some columns to be numeric.
return final_inputs
def position_based_plot(unseq_df,target_columns,size=650):
p = figure(title="", x_axis_label='sequence position', y_axis_label='mean_by_seqposition',width=size, height=size)
for i, col in enumerate(target_columns):
g = unseq_df.groupby("seqpos")[col].mean()
x = g.index
y = g.values
p.line(x, y, legend_label=col, line_width=2, line_color=colorlist[i % 6])
p.add_tools(HoverTool(
mode="mouse",
point_policy="follow_mouse"))
html = file_html(p, CDN, "plot")
return html
def sequence_length_counts(df,seq_column="sequence"):
seq_list = df[seq_column].apply(lambda x: len(x))
g = seq_list.value_counts()
index = list(g.index)
index = [str(i) for i in index]
counts = list(g.values)
p = figure(x_range=index, plot_height=250, title="",
toolbar_location=None, tools="")
p.vbar(x=index, top=counts, width=0.23)
html = file_html(p, CDN, "plot")
return html
def feature_base_target_means(unseq_df,target_columns,features):
print("location: feature_base_target_means")
print(unseq_df.shape)
# With following part, we make sure that we only take real target values into consideration.
for col in [col+'_flag' for col in target_columns]:
unseq_df = unseq_df[unseq_df[col]==1]
print(unseq_df.shape)
for f_ in features:
data = {}
data[f_] = list(unseq_df[f_].unique())
for i, col in enumerate(target_columns):
g = unseq_df.groupby(f_)[col].mean()
data[col] = list(g.values)
x = [(seq, target) for seq in data[f_] for target in target_columns]
counts = []
for i in range(len(data[list(data.keys())[0]])):
for key in target_columns:
counts.append(data[key][i])
source = ColumnDataSource(data=dict(x=x, counts=counts))
p = figure(x_range=FactorRange(*x), plot_height=250, title=f"by {f_}",
toolbar_location=None, tools="")
p.vbar(x='x', top='counts', width=0.9, source=source, line_color="white",
fill_color=factor_cmap('x', palette=Spectral4, factors=target_columns, start=1, end=2))
p.y_range.start = 0
p.x_range.range_padding = 0.1
p.xaxis.major_label_orientation = 1
p.xgrid.grid_line_color = None
#p.add_tools(HoverTool(
# mode="mouse",
# point_policy="follow_mouse"))
html = file_html(p, CDN, "plot2")
return html
def arnie_feature(df, feature, package, sequence_column="sequence"):
s = df[["id"]]
if feature == "mfe":
s[feature] = df[sequence_column].apply(lambda x: mfe(x,package=package))
elif feature == "bpps":
s[feature] = df[sequence_column].apply(lambda x: bpps(x,package=package))
elif feature == "unpaired_proba":
s[feature] = df[sequence_column].apply(lambda x: 1 - np.sum(bpps(x,package=package),axis=0))
return s
def make_hist_plot(title, hist, edges,size=550):
p = figure(title=title, tools='', background_fill_color="#fafafa",width=size, height=size)
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
fill_color="red", line_color="white", alpha=0.5)
p.y_range.start = 0
p.legend.location = "center_right"
#p.xaxis.axis_label = 'x'
#p.yaxis.axis_label = 'Pr(x)'
p.grid.grid_line_color="white"
html = file_html(p, CDN, "plot")
return html