-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpret_prompt.py
63 lines (46 loc) · 1.7 KB
/
interpret_prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import sys
import argparse
import torch
from clip.simple_tokenizer import SimpleTokenizer
from clip import clip
def load_clip_to_cpu(backbone_name="RN50"):
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
model = clip.build_model(state_dict or model.state_dict())
return model
parser = argparse.ArgumentParser()
parser.add_argument("fpath", type=str, help="Path to the learned prompt")
parser.add_argument("topk", type=int, help="Select top-k similar words")
args = parser.parse_args()
fpath = args.fpath
topk = args.topk
assert os.path.exists(fpath)
print(f"Return the top-{topk} matched words")
tokenizer = SimpleTokenizer()
clip_model = load_clip_to_cpu()
token_embedding = clip_model.token_embedding.weight
print(f"Size of token embedding: {token_embedding.shape}")
prompt_learner = torch.load(fpath, map_location="cpu")["state_dict"]
ctx = prompt_learner["ctx"]
ctx = ctx.float()
print(f"Size of context: {ctx.shape}")
if ctx.dim() == 2:
# Generic context
distance = torch.cdist(ctx, token_embedding)
print(f"Size of distance matrix: {distance.shape}")
sorted_idxs = torch.argsort(distance, dim=1)
sorted_idxs = sorted_idxs[:, :topk]
for m, idxs in enumerate(sorted_idxs):
words = [tokenizer.decoder[idx.item()] for idx in idxs]
dist = [f"{distance[m, idx].item():.4f}" for idx in idxs]
print(f"{m+1}: {words} {dist}")
elif ctx.dim() == 3:
# Class-specific context
raise NotImplementedError