-
-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgtest.flx
257 lines (228 loc) · 7.4 KB
/
gtest.flx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// GRAMMAR TREE SYNTAX using polymorphic variants
SCHEME """(define (mklist es)`(ast_apply ,_sr (,(nos "list") (ast_tuple ,_sr ,es))))""";
syntax grammar {
x[let_pri]:= "grammar" xproduction* "endgrammar" =>#
"""`(ast_variant ("grammar" ,(mklist _2)))"""
;
xproduction := sname ":=" (xnonterminal | xterminal)* "=>#" sstring ";" =>#
"""
(let*
(
(cast (lambda (sym)`(ast_coercion ,_sr (,sym ,(nos "sym_t")))))
(mapcast (map cast _3))
)
`(ast_variant ("production" (ast_tuple ,_sr (,(stringof _1) ,(mklist mapcast) ,(stringof _5)))))
)
"""
;
xnonterminal := sname =>#
"""`(ast_variant ("nonterminal" ,(stringof _1)))"""
;
xterminal := sstring =># // a string, to be interpreted as a regexp
"""`(ast_variant ("terminal" ,(stringof _1))))""";
}
//----------------------------------------------------------
// TREE TYPES
typedef gram_t = (
| `grammar of list[prod_t]
);
typedef prod_t = (
| `production of string * list[sym_t] * string
);
typedef sym_t = (
| `terminal of string
| `nonterminal of string
);
//----------------------------------------------------------
// TREE PRETTY PRINTS
instance Str[sym_t] {
fun str(x:sym_t):string =>
match x with
| `terminal s => s.repr
| `nonterminal s => s
endmatch
;
}
instance Str[prod_t] {
fun str(x:prod_t):string =>
match x with
| `production (name, symbols, action) =>
" " + name + " := " + List::cat "," (List::map (str of sym_t) symbols) +" =># " + action.repr + ";"
endmatch
;
}
instance Str[gram_t] {
fun str(x:gram_t):string =>
match x with
| `grammar ls => "grammar\n" + List::cat "\n" (List::map (str of prod_t) ls) +"\nendgrammar\n"
endmatch
;
}
//----------------------------------------------------------
// ARRAY FORMAT
typedef aprod_t = (
| `aproduction of string * varray[sym_t] * string
);
typedef agram_t = (
| `agrammar of varray[aprod_t]
);
fun make_aprod: prod_t -> aprod_t =
| `production (name,symbols,action) =>
let new_symbols = varray symbols in
`aproduction(name,new_symbols,action)
;
fun make_agram: gram_t -> agram_t =
| `grammar productions =>
let new_productions = varray(List::map make_aprod productions) in
`agrammar new_productions
;
instance Str[aprod_t] {
fun str(p:aprod_t) =>
match p with
| `aproduction (name, symbols, action) =>
" " + name + " := " + List::cat "," (List::map (str of sym_t) symbols.as_list) +" =># " + action.repr + ";"
endmatch
;
}
instance Str[agram_t] {
fun str(x:agram_t):string =>
match x with
| `agrammar productions => "grammar\n" + List::cat "\n" (List::map (str of aprod_t) productions.as_list) +"\nendgrammar\n"
endmatch
;
}
//----------------------------------------------------------
// MAP SYMBOLS
//
// Map the string name of a non-terminal to a list of productions for that symbol
typedef ntdefs_t = strdict[list[size]];
fun ntmap (g:agram_t) : ntdefs_t {
var ntdefs = strdict[list[size]]();
match g with
| `agrammar productions =>
for index in 0uz ..< productions.len do
var key = match (get(productions,index)) with | `aproduction (name,_,_) => name endmatch;
var dflt = Empty[size];
var data = ntdefs.get_dflt (key, dflt);
var new_data = Snoc (data, index);
ntdefs.add key new_data;
done
endmatch;
return ntdefs;
}
//----------------------------------------------------------
// Produce an array of non-terminal string names
// and a reverse map from string names to the assigned indices
typedef ntindices_t = varray[string] * strdict[size];
fun get_ntindices (ntmap : ntdefs_t) : ntindices_t {
var nnts = 0uz;
for data in ntmap perform ++nnts; // hacky!
var ntnames = varray[string] nnts;
var ntindices = strdict[size]();
for data in ntmap do
var name = data.0;
ntindices.add name ntnames.len;
push_back (ntnames, data.0);
done
return ntnames, ntindices;
}
// Map the string name of a terminal to a list of locations for that symbol
// A location is a pair, the production index and the location in the production.
typedef tdefs_t = strdict[list[size * size]];
fun tmap (g:agram_t) : tdefs_t {
var tdefs = strdict[list[size * size]]();
match g with
| `agrammar productions =>
for pindex in 0uz ..< productions.len do
var symbols = match (get(productions,pindex)) with | `aproduction (_,symbols,_) => symbols endmatch;
for sindex in 0uz ..< symbols.len do
match symbols.sindex with
| `terminal name =>
var dflt = Empty[size * size];
var data = tdefs.get_dflt (name, dflt);
var new_data = Snoc (data, (pindex,sindex));
tdefs.add name new_data;
| _ => ;
endmatch;
done
done
endmatch;
return tdefs;
}
//----------------------------------------------------------
// Produce an array of terminal string names
// and a reverse map from string names to the assigned indices
typedef tindices_t = varray[string] * strdict[size];
fun get_tindices (tmap : tdefs_t) : tindices_t {
var nts = 0uz;
for data in tmap perform ++nts; // hacky!
var tnames = varray[string] nts;
var tindices = strdict[size]();
for data in tmap do
var name = data.0;
tindices.add name tnames.len;
push_back (tnames, data.0);
done
return tnames, tindices;
}
//----------------------------------------------------------
// Rebuild the grammar using indices for the symbols
// Terminals indices are negated instead of using a constructor,
// so as to make the representation compact
typedef bsym_t = int;
struct bprod_t { nt: int; syms: varray[bsym_t]; act: string; }
typedef bgram_t = varray[bprod_t];
instance Str[bprod_t] { fun str (x:bprod_t) => "\n " + x.nt.str + " := " + x.syms.str + " =># " + x.act.repr + ";"; }
fun make_bgram (a: agram_t, nts: strdict[size], ts: strdict[size]) : bgram_t {
match a with
| `agrammar ps =>
var g = varray[bprod_t] ps.len;
for p in ps do
match p with
| `aproduction (name, syms, act) =>
var s = varray[bsym_t] syms.len;
var ntindex = match nts.get name with | Some x=> x.int | None => 0 endmatch;
for sym in syms do
var six =
match sym with
| `terminal x => -1-match (ts.get x) with | Some x=> x.int | None => 0 endmatch
| `nonterminal x => match (nts.get x) with | Some x => x.int | None => 0 endmatch
endmatch
;
push_back (s, six);
done
var new_prod = bprod_t(ntindex,s,act);
push_back(g,new_prod);
endmatch;
done
return g;
endmatch;
}
//----------------------------------------------------------
// TEST CASE
open syntax grammar;
println$ "Grammar test";
var s = grammar
start := x y =># "act1";
x := "Jello" =># "act2";
x := "Jello2" =># "act2a";
y := "world" =># "act3";
z := "Jello" "world" =># "act4";
endgrammar;
println$ "Grammar spec parsed";
var a = make_agram s;
println$ "tree format\n" + s.str;
println$ "array format\n" + a.str;
var nts = ntmap a;
println$ "ntdefs\n" + nts.str;
var ts = tmap a;
instance Repr[size * size] { fun repr(x:size,y:size) => "(" + x.str + ", " + y.str + ")"; }
println$ "tdefs\n" + ts.str;
var ntnames, ntindices = get_ntindices nts;
println$ "ntnames\n" + ntnames.str;
println$ "ntindices\n" + ntindices.str;
var tnames, tindices = get_tindices ts;
println$ "tnames\n" + tnames.str;
println$ "tindices\n" + tindices.str;
var bgram = make_bgram (a, ntindices, tindices);
println$ bgram.str;