diff --git a/README.rst b/README.rst index 6f38c45..e0cc325 100644 --- a/README.rst +++ b/README.rst @@ -42,4 +42,79 @@ Navigate to the cloned repository and install the module .. code:: bash - pip install . \ No newline at end of file + pip install . + +Simulating cryo-EM particles +----------------------------- +To simulate cryo-EM particles, you can use the CryoEmSimulator class. The class takes in a simulation config file and simulates cryo-EM particles based on the parameters specified in the config file. + +.. code:: python + + from cryo_sbi import CryoEmSimulator + simulator = CryoEmSimulator("path_to_simulation_config_file.json") + images, parameters = simulator.simulate(num_sim=10, return_parameters=True) + +The simulation config file should be a json file with the following structure: + +.. code:: json + + { + "N_PIXELS": 128, + "PIXEL_SIZE": 1.5, + "SIGMA": [0.5, 5.0], + "MODEL_FILE": "path_to_models/models.pt", + "SHIFT": 25.0, + "DEFOCUS": [0.5, 2.0], + "SNR": [0.001, 0.5], + "AMP": 0.1, + "B_FACTOR": [1.0, 100.0] + } + +Training an amortized posterior model +-------------------------------------- +Training of an amortized posterior can be done using the train_npe_model command line utility. The utility takes in an image config file, a train config file, and other training parameters. The utility trains a neural network to approximate the posterior distribution of the parameters given the images. + +.. code:: bash + + train_npe_model \ + --image_config_file path_to_simulation_config_file.json \ + --train_config_file path_to_train_config_file.json\ + --epochs 150 \ + --estimator_file posterior.estimator \ + --loss_file posterior.loss \ + --n_workers 4 \ + --simulation_batch_size 5120 \ + --train_device cuda + +The training config file should be a json file with the following structure: + +.. code:: json + + { + "EMBEDDING": "RESNET18", + "OUT_DIM": 256, + "NUM_TRANSFORM": 5, + "NUM_HIDDEN_FLOW": 10, + "HIDDEN_DIM_FLOW": 256, + "MODEL": "NSF", + "LEARNING_RATE": 0.0003, + "CLIP_GRADIENT": 5.0, + "THETA_SHIFT": 25, + "THETA_SCALE": 25, + "BATCH_SIZE": 256 + } + +Inference +--------- +Sampling from the posterior distribution can be done using the sample_posterior function in the estimator_utils module. The function takes in an estimator, images, and other parameters and returns samples from the posterior distribution. + +.. code:: python + + import cryo_sbi.utils.estimator_utils as est_utils + samples = est_utils.sample_posterior( + estimator=posterior, + images=images, + num_samples=20000, + batch_size=100, + device="cuda", + )