diff --git a/predict_cytosol.py b/predict_cytosol.py index feafbf5..700194c 100644 --- a/predict_cytosol.py +++ b/predict_cytosol.py @@ -2,7 +2,7 @@ from keras.models import load_model from tensorflow.keras.metrics import MeanIoU -model = load_model("tutorial118_mitochondria_25epochs.hdf5", compile=False) +model = load_model("tutorial118_mitochondria_100epochs.hdf5", compile=False) import tensorflow as tf import datetime @@ -21,107 +21,6 @@ from tifffile import imread from csbdeep.utils import Path, normalize -image_directory = '/training_data/cytosol/images/' -mask_directory = '/training_data/cytosol/masks/' - -X = sorted(glob('training_data/cytosol/images/*.tif')) -Y = sorted(glob('training_data/cytosol/masks/*.tif')) -assert all(Path(x).name==Path(y).name for x,y in zip(X,Y)) - -image_names = sorted(glob('training_data/cytosol/images/*.tif')) - -SIZE = 256 -num_images = len(X) - -image_names_subset = image_names[0:num_images] - - -images = [cv2.imread(img, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH) for img in image_names_subset] - - -image_dataset = np.array(images) -image_dataset = np.expand_dims(image_dataset, axis = 3) - -mask_names = sorted(glob("training_data/cytosol/masks/*.tif")) -mask_names_subset = mask_names[0:num_images] -masks = [cv2.imread(mask, 0) for mask in mask_names_subset] - -thresholded_masks = [] - -for mask in mask_names_subset: - # Load the image - mask_image = cv2.imread(mask, 0) - - # Threshold the image - _, thresholded_mask = cv2.threshold(mask_image, 1, 255, cv2.THRESH_BINARY) - - thresholded_masks.append(thresholded_mask) - -mask_dataset = np.array(thresholded_masks) -mask_dataset = np.expand_dims(mask_dataset, axis = 3) - -print("Image data shape is: ", image_dataset.shape) -print("Mask data shape is: ", mask_dataset.shape) -print("Max pixel value in image is: ", image_dataset.max()) -print("Labels in the mask are : ", np.unique(mask_dataset)) - -#Normalize images -image_dataset = image_dataset /image_dataset.max() #Can also normalize or scale using MinMax scaler -#Do not normalize masks, just rescale to 0 to 1. -mask_dataset = mask_dataset /255. #PIxel values will be 0 or 1 - -from sklearn.model_selection import train_test_split -X_train, X_test, y_train, y_test = train_test_split(image_dataset, mask_dataset, test_size = 0.20, random_state = 42) - - - -cv2_mat = cv2.cvtColor(X_test[0,:,:,:]) - - -# Assuming X_test is your NumPy array containing a 64-bit floating-point image -monochrome_image = X_test[0, :, :, 0] # Extract the first monochrome image - -# Convert the 64-bit floating-point image to 8-bit unsigned integer (0 to 255 range) -monochrome_image_uint8 = np.clip(monochrome_image * 255.0, 0, 255).astype(np.uint8) - -# Convert the 8-bit image to a BGR image -cv2_mat = cv2.cvtColor(monochrome_image_uint8, cv2.COLOR_GRAY2BGR) - -# Assuming you have cv2_mat as your image -cv2.imshow("Image", cv2_mat) -cv2.waitKey(0) # Add this to wait for a key press and then close the window -cv2.destroyAllWindows() # Add this to close all OpenCV windows when you're done - - -imread() - -#IOU -y_pred=model.predict(X_test) - - -float32_array = y_pred[0,:,:,:] - -float32_array = (float32_array > 0.5)*1.00 - - -# Assuming you have a NumPy array called 'float32_array' -# Scale the float32 array to the range [0, 255] -scaled_array = ((float32_array - float32_array.min()) / (float32_array.max() - float32_array.min()) * 255).astype(np.uint8) - -# Create a monochrome OpenCV Mat -monochrome_mat = cv2.cvtColor(scaled_array, cv2.COLOR_GRAY2BGR) - -# Convert the BGR image to grayscale -monochrome_mat = cv2.cvtColor(monochrome_mat, cv2.COLOR_BGR2GRAY) - - -# Assuming you have cv2_mat as your image -cv2.imshow("Image2", monochrome_mat) -cv2.waitKey(0) # Add this to wait for a key press and then close the window -cv2.destroyAllWindows() # Add this to close all OpenCV windows when you're done - - - images = cv2.imread('./training_data/images_cytosol/CMYC_MAX_4.tif', cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH)