forked from berenslab/rna-seq-tsne
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver-10xdata.py
141 lines (104 loc) · 5.23 KB
/
server-10xdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import pickle
import sys
sys.path.append('/gpfs01/berens/user/dkobak/FIt-SNE')
from fast_tsne import fast_tsne
# LOAD AND PREPROCESS THE DATA
import scanpy.api as sc
sc.settings.verbosity = 2
# Data file is from here
# https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
adata = sc.read_10x_h5('big-data/10x/1M_neurons_filtered_gene_bc_matrices_h5.h5')
sc.pp.recipe_zheng17(adata)
X = np.copy(adata.X)
X = X - X.mean(axis=0)
U, s, V = np.linalg.svd(X, full_matrices=False)
U[:, np.sum(V,axis=1)<0] *= -1
X = np.dot(U, np.diag(s))
X = X[:, np.argsort(s)[::-1]][:,:50]
pickle.dump(X, open('big-pickles/10x-pca.pickle', 'wb'))
# load cluster labels
# https://github.com/theislab/scanpy_usage/blob/master/170522_visualizing_one_million_cells/results/louvain.csv.gz
clusters = pd.read_csv('data/10x-1mln-scanpy-louvain.csv.gz', header=None).values[:,1].astype(int)
# DOWNSAMPLE AND RUN t-SNE
X = pickle.load(open('big-pickles/10x-pca.pickle', 'rb')).astype(float)
PCAinit = X[:,:2] / np.std(X[:,0]) * 0.0001
np.random.seed(42)
ind25k = np.random.choice(X.shape[0], 25000, replace=False)
Z25k = fast_tsne(X[ind25k,:], perplexity_list=[30,int(25000/100)],
initialization = PCAinit[ind25k,:], seed=42,
learning_rate = 25000/12)
pickle.dump([Z25k, []], open("big-pickles/10x-downsampling.pickle", "wb"))
def downsampled_nn(X, Z, downsampled_ind, batchsize=1000, knn=10):
ind_rest = np.where(~np.isin(np.arange(X.shape[0]), downsampled_ind))[0]
steps = int(np.ceil(ind_rest.size/batchsize))
positions = np.zeros((X.shape[0], 2))
positions[downsampled_ind,:] = Z
def pdist2(A,B):
return np.sum(A**2,axis=1)[:, None] + np.sum(B**2, axis=1)[None, :] - 2 * A @ B.T
for i in range(steps):
print('.', end='', flush=True)
if (i+1)%100==0:
print('', flush=True)
endind = np.min(((i+1)*batchsize, ind_rest.size))
batch = ind_rest[i*batchsize:endind]
D = pdist2(X[batch, :], X[downsampled_ind,:])
ind = np.argpartition(D, knn)[:, :knn]
for i in range(batch.size):
positions[batch[i],:] = np.median(Z[ind[i,:],:], axis=0)
print('', flush=True)
return positions
%time positions = downsampled_nn(X, Z25k, ind25k, batchsize=10000) # 10 min
pickle.dump([Z25k, positions], open("big-pickles/10x-downsampling.pickle", "wb"))
# RUN T-SNE VARIANTS ON THE FULL DATA SET
X = pickle.load(open('big-pickles/10x-pca.pickle', 'rb'))
Z25k, positions = pickle.load(open('big-pickles/10x-downsampling.pickle', 'rb'))
Zs = {}
init25k = positions/np.std(positions[:,0]) * 0.0001
%time Z = fast_tsne(X, perplexity=30, initialization=init25k, late_exag_coeff=4, start_late_exag_iter=250, learning_rate=X.shape[0]/12, seed=42, load_affinities='save') # 13 min 37 s
Zs['mine'] = Z
Z = fast_tsne(X, perplexity=30, initialization=init25k, learning_rate=X.shape[0]/12, seed=42, load_affinities='load')
Zs['noexagg'] = Z
%time Z = fast_tsne(X, perplexity=30, initialization=PCAinit, late_exag_coeff=4, start_late_exag_iter=250, learning_rate=X.shape[0]/12, seed=42, load_affinities='load')
Zs['pcainit'] = Z
Z = fast_tsne(X, perplexity=30, initialization=PCAinit, learning_rate=X.shape[0]/12, seed=42, load_affinities='load')
Zs['noexagg-pcainit'] = Z
Z = fast_tsne(X, perplexity=30, late_exag_coeff=4, start_late_exag_iter=250, learning_rate=X.shape[0]/12, seed=42, load_affinities='load')
Zs['randinit'] = Z
Z = fast_tsne(X, perplexity=30, learning_rate=1000, seed=42, load_affinities='load')
Zs['scanpy'] = Z
Z = fast_tsne(X, perplexity=30, learning_rate=X.shape[0]/12, seed=42, load_affinities='load')
Zs['belkina'] = Z
Z = fast_tsne(X, perplexity=30, seed=42, load_affinities='load')
Zs['default'] = Z
import umap
%time Z = umap.UMAP(random_state=1).fit_transform(X) # 56 min
Zs['umap'] = Z
pickle.dump([Zs, clusters], open("big-pickles/10x-tsne.pickle", "wb"))
# EXTRACT MARKER GENES
import collections
import scipy.sparse as sp_sparse
import tables
f = tables.open_file('big-data/10x/1M_neurons_filtered_gene_bc_matrices_h5.h5', 'r')
group = f.get_node(f.root, 'mm10')
gene_ids = getattr(group, 'genes').read()
gene_names = getattr(group, 'gene_names').read().astype(str)
barcodes = getattr(group, 'barcodes').read()
data = getattr(group, 'data').read()
indices = getattr(group, 'indices').read()
indptr = getattr(group, 'indptr').read()
shape = getattr(group, 'shape').read()
matrix = sp_sparse.csc_matrix((data, indices, indptr), shape=shape)
markergenes = ['Snap25', 'Slc17a6', 'Slc17a7', 'Gad1', 'Gad2',
'Slc32a1', 'Mog', 'Aqp4', 'Pdgfra', 'Itgam', 'Flt1',
'Bgn', 'Olig1', 'Gja1', 'Xdh', 'Ctss', 'Myl9',
'Vip', 'Sst', 'Pvalb', 'Nrn1', 'S1pr1', 'Gia1',
'Gjb6', 'Lcat', 'Acsbg1', 'Neurod6', 'Akap7',
'Htr3a', 'Foxp2', 'Tubb23', 'Slc1a3', 'Top2a',
'Stmn2', 'Meg3', 'Nrp1', 'Tac2', 'Reln', 'Pax6',
'Tbr2', 'Tbr1', 'Eomes', 'Pax6', 'Tac1', 'Tubb3',
'Stmn2', 'Sox2', 'Aldoc', 'Hes1']
markerind = np.array([i for i,g in enumerate(gene_names) if g in markergenes])
markergenes = np.array([g for i,g in enumerate(gene_names) if g in markergenes])
markerexp = np.array(matrix[markerind,:].todense()).T.astype('float')
pickle.dump([markergenes, markerexp], open("big-pickles/10x-markers.pickle", "wb"))