Skip to content

Latest commit

 

History

History
 
 

ruby

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

whispercpp

whisper.cpp

Ruby bindings for whisper.cpp, an interface of automatic speech recognition model.

Installation

Install the gem and add to the application's Gemfile by executing:

$ bundle add whispercpp

If bundler is not being used to manage dependencies, install the gem by executing:

$ gem install whispercpp

Usage

require "whisper"

whisper = Whisper::Context.new(Whisper::Model["base"])

params = Whisper::Params.new
params.language = "en"
params.offset = 10_000
params.duration = 60_000
params.max_text_tokens = 300
params.translate = true
params.print_timestamps = false
params.initial_prompt = "Initial prompt here."

whisper.transcribe("path/to/audio.wav", params) do |whole_text|
  puts whole_text
end

Preparing model

Some models are prepared up-front:

base_en = Whisper::Model["base.en"]
whisper = Whisper::Context.new(base_en)

At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call #clear_cache:

Whisper::Model["base"].clear_cache

You can see the list of prepared model names by Whisper::Model.preconverted_model_names:

puts Whisper::Model.preconverted_model_names
# tiny
# tiny.en
# tiny-q5_1
# tiny.en-q5_1
# tiny-q8_0
# base
# base.en
# base-q5_1
# base.en-q5_1
# base-q8_0
#   :
#   :

You can also use local model files you prepared:

whisper = Whisper::Context.new("path/to/your/model.bin")

Or, you can download model files:

model_uri = Whisper::Model::URI.new("http://example.net/uri/of/your/model.bin")
whisper = Whisper::Context.new(model_uri)

See models page for details.

Preparing audio file

Currently, whisper.cpp accepts only 16-bit WAV files.

API

Segments

Once Whisper::Context#transcribe called, you can retrieve segments by #each_segment:

def format_time(time_ms)
  sec, decimal_part = time_ms.divmod(1000)
  min, sec = sec.divmod(60)
  hour, min = min.divmod(60)
  "%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end

whisper.transcribe("path/to/audio.wav", params)

whisper.each_segment.with_index do |segment, index|
  line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
    nth: index + 1,
    st: format_time(segment.start_time),
    ed: format_time(segment.end_time),
    text: segment.text
  }
  line << " (speaker turned)" if segment.speaker_next_turn?
  puts line
end

You can also add hook to params called on new segment:

def format_time(time_ms)
  sec, decimal_part = time_ms.divmod(1000)
  min, sec = sec.divmod(60)
  hour, min = min.divmod(60)
  "%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end

# Add hook before calling #transcribe
params.on_new_segment do |segment|
  line = "[%{st} --> %{ed}] %{text}" % {
    st: format_time(segment.start_time),
    ed: format_time(segment.end_time),
    text: segment.text
  }
  line << " (speaker turned)" if segment.speaker_next_turn?
  puts line
end

whisper.transcribe("path/to/audio.wav", params)

Models

You can see model information:

whisper = Whisper::Context.new(Whisper::Model["base"])
model = whisper.model

model.n_vocab # => 51864
model.n_audio_ctx # => 1500
model.n_audio_state # => 512
model.n_audio_head # => 8
model.n_audio_layer # => 6
model.n_text_ctx # => 448
model.n_text_state # => 512
model.n_text_head # => 8
model.n_text_layer # => 6
model.n_mels # => 80
model.ftype # => 1
model.type # => "base"

Logging

You can set log callback:

prefix = "[MyApp] "
log_callback = ->(level, buffer, user_data) {
  case level
  when Whisper::LOG_LEVEL_NONE
    puts "#{user_data}none: #{buffer}"
  when Whisper::LOG_LEVEL_INFO
    puts "#{user_data}info: #{buffer}"
  when Whisper::LOG_LEVEL_WARN
    puts "#{user_data}warn: #{buffer}"
  when Whisper::LOG_LEVEL_ERROR
    puts "#{user_data}error: #{buffer}"
  when Whisper::LOG_LEVEL_DEBUG
    puts "#{user_data}debug: #{buffer}"
  when Whisper::LOG_LEVEL_CONT
    puts "#{user_data}same to previous: #{buffer}"
  end
}
Whisper.log_set log_callback, prefix

Using this feature, you are also able to suppress log:

Whisper.log_set ->(level, buffer, user_data) {
  # do nothing
}, nil
Whisper::Context.new(MODEL)

Low-level API to transcribe

You can also call Whisper::Context#full and #full_parallel with a Ruby array as samples. Although #transcribe with audio file path is recommended because it extracts PCM samples in C++ and is fast, #full and #full_parallel give you flexibility.

require "whisper"
require "wavefile"

reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
samples = reader.enum_for(:each_buffer).map(&:samples).flatten

whisper = Whisper::Context.new(Whisper::Model["base"])
whisper.full(Whisper::Params.new, samples)
whisper.each_segment do |segment|
  puts segment.text
end

The second argument samples may be an array, an object with length method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.

License

The same to whisper.cpp.