-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom-beta-distribution.nlogo
1014 lines (895 loc) · 20 KB
/
random-beta-distribution.nlogo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
globals [
knuth-gamma-iterations
knuth-beta-iterations
]
turtles-own [
sampled-variable
]
to setup
ca
set knuth-gamma-iterations 0
set knuth-beta-iterations 0
reset-ticks
end
to go
create-turtles 1 [
set shape "circle"
set size 0.3
set ycor random-ycor
set sampled-variable (ifelse-value (distribution = "gamma") [
ifelse-value use-knuth-gamma? [ knuth-random-gamma p-1 ] [ random-gamma p-1 1 ]
] (distribution = "beta") [
ifelse-value use-knuth-gamma? [ knuth-random-beta p-1 p-2 ] [ random-beta p-1 p-2 ]
] (distribution = "scaled-beta") [
ifelse-value use-knuth-gamma? [
knuth-random-scaled-beta p-1 p-2 desired-beta-minimum desired-beta-maximum
] [
random-scaled-beta p-1 p-2 desired-beta-minimum desired-beta-maximum
]
] (distribution = "Chi-square") [
ifelse-value use-knuth-gamma? [ knuth-random-chi-square p-1 ] [ random-chi-square p-1 ]
] (distribution = "F") [
ifelse-value use-knuth-gamma? [ knuth-random-f p-1 p-2 ] [ random-f p-1 p-2 ]
] [
0
])
set xcor (ifelse-value (sampled-variable < sample-px-min) [
min-pxcor + (random-float 0.8) - 0.4
] (sampled-variable > sample-px-max) [
max-pxcor + (random-float 0.8) - 0.4
] [
min-pxcor + 1 + (((max-pxcor - 1) - (min-pxcor + 1)) * ((sampled-variable - sample-px-min) / (sample-px-max - sample-px-min)))
])
set color (ifelse-value (sampled-variable < sample-px-min) [
sky
] (sampled-variable > sample-px-max) [
red
] [
green
])
]
tick
end
to-report random-beta [ alpha beta ]
let x_1 random-gamma alpha 1
let x_2 random-gamma beta 1
report x_1 / (x_1 + x_2)
end
to-report random-scaled-beta [ alpha beta minimum maximum ]
let sample random-beta alpha beta
report ((maximum - minimum) * sample) + minimum
end
to-report random-chi-square [ df ]
let y random-gamma (df / 2) 1
report 2 * y
end
to-report random-f [ df-1 df-2 ]
let y random-beta (df-1 / 2) (df-2 / 2)
report (df-2 * y) / (df-1 * (1 - y))
end
to-report knuth-random-gamma [ a ]
let sqrt2am1 sqrt ((2 * a) - 1)
let ok false
let result 0
while [ not ok ] [
set knuth-gamma-iterations knuth-gamma-iterations + 1
let y tan random-float 180
let x (sqrt2am1 * y) + (a - 1)
if x > 0 [
let v random-float 1
if v <= (1 + (y * y)) * exp ( ((a - 1) * ln (x / (a - 1))) - (sqrt2am1 * y) ) [
set result x
set ok true
]
]
]
report result
end
to-report knuth-random-beta [ a b ]
ifelse a < 3 or b < 3 [
let ok false
let result 0
while [ not ok ] [
set knuth-beta-iterations knuth-beta-iterations + 1
let y_1 (random-float 1) ^ (1 / a)
let y_2 (random-float 1) ^ (1 / b)
if (y_1 + y_2) <= 1 [
set result y_1 / (y_1 + y_2)
set ok true
]
]
report result
] [
let x_1 knuth-random-gamma a
let x_2 knuth-random-gamma b
report x_1 / (x_1 + x_2)
]
end
to-report knuth-random-scaled-beta [ a b minimum maximum ]
let sample knuth-random-beta a b
report ((maximum - minimum) * sample) + minimum
end
to-report knuth-random-chi-square [ df ]
report 2 * (knuth-random-gamma (df / 2))
end
to-report knuth-random-f [ df-1 df-2 ]
let y knuth-random-beta (df-1 / 2) (df-2 / 2)
report (df-2 * y) / (df-1 * (1 - y))
end
to set-beta-parameters
let m desired-beta-mean
let v desired-beta-variance
if v >= m * (1 - m) [
error (word "The variance is too high for the mean. Set v to no more than " (m * (1 - m)))
]
set distribution "beta"
set p-1 (((m ^ 2) * (1 - m)) / v) - m
set p-2 p-1 * ((1 - m) / m)
end
to set-scaled-beta-parameters
let m desired-beta-mean
let v desired-beta-variance
let a desired-beta-minimum
let c desired-beta-maximum
if v >= (m - a) * (c - m) [
error (word "The variance is too high given the mean, minimum and maximum")
]
set distribution "scaled-beta"
let fraction ((a * c) - (a * m) - (c * m) + (m ^ 2) + v) / (v * (c - a))
set p-1 (a - m) * fraction
set p-2 (m - c) * fraction
end
to-report min-delta-1
let m desired-beta-mean
let v desired-beta-variance
let a desired-beta-minimum
let c desired-beta-maximum
report max (list 0 (((a * c) + v + (m * (m - c - a)) - (delta-2 * (m - a))) / (c - m + delta-2)) )
end
to set-delta-1
set delta-1 max (list delta-1 min-delta-1)
end
to-report desired-beta-minimum
report beta-minimum - delta-1
end
to-report desired-beta-maximum
report beta-maximum + delta-2
end
@#$#@#$#@
GRAPHICS-WINDOW
215
10
652
448
-1
-1
13.0
1
10
1
1
1
0
1
1
1
-16
16
-16
16
0
0
1
ticks
30.0
BUTTON
14
10
80
43
NIL
setup
NIL
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
BUTTON
82
10
145
43
NIL
go
T
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
CHOOSER
14
51
213
96
distribution
distribution
"gamma" "beta" "scaled-beta" "Chi-square" "F"
2
SWITCH
14
98
213
131
use-knuth-gamma?
use-knuth-gamma?
1
1
-1000
INPUTBOX
13
182
112
242
p-1
1.457337792642137
1
0
Number
INPUTBOX
114
182
212
242
p-2
1.1739665551839438
1
0
Number
INPUTBOX
13
267
112
327
sample-px-min
2.4
1
0
Number
INPUTBOX
114
267
212
327
sample-px-max
4.91
1
0
Number
PLOT
13
452
652
690
Sampled Variable Distribution
NIL
NIL
0.0
5.0
0.0
1.0
true
false
"" ""
PENS
"default" 0.05 1 -16777216 true "" "histogram [sampled-variable] of turtles"
MONITOR
14
356
213
401
gamma iterations per sample
ifelse-value (count turtles > 0) [\n knuth-gamma-iterations / (count turtles)\n] [\n 0\n]
17
1
11
MONITOR
14
403
213
448
beta iterations per sample
ifelse-value (count turtles > 0) [\n knuth-beta-iterations / (count turtles)\n] [\n 0\n]
17
1
11
TEXTBOX
15
328
164
356
Relevant when use-knuth-gamma? is 'Yes'
11
0.0
1
TEXTBOX
17
137
57
179
alpha\ndf\ndf-1
11
0.0
1
TEXTBOX
118
151
151
179
beta\ndf-2
11
0.0
1
TEXTBOX
15
250
193
268
For visualization in the 'space'
11
0.0
1
BUTTON
148
10
213
43
10000
setup\nrepeat 10000 [\n go\n]
NIL
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
MONITOR
14
695
124
740
Measured mean
mean [sampled-variable] of turtles
10
1
11
MONITOR
127
695
255
740
Measured variance
variance [sampled-variable] of turtles
10
1
11
INPUTBOX
259
695
408
755
desired-beta-mean
3.84
1
0
Number
INPUTBOX
411
695
560
755
desired-beta-variance
0.46
1
0
Number
BUTTON
564
695
651
728
Set Beta
set-beta-parameters
NIL
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
MONITOR
259
758
407
803
expected-beta-mean
ifelse-value (distribution = \"scaled-beta\") [\n desired-beta-minimum + ((desired-beta-maximum - desired-beta-minimum) * (p-1 / (p-1 + p-2)))\n] [\n p-1 / (p-1 + p-2)\n]
10
1
11
MONITOR
411
758
559
803
expected-beta-variance
ifelse-value (distribution = \"scaled-beta\") [\n ((desired-beta-maximum - desired-beta-minimum) ^ 2) * ((p-1 * p-2) / (((p-1 + p-2) ^ 2) * (p-1 + p-2 + 1)))\n] [\n (p-1 * p-2) / (((p-1 + p-2) ^ 2) * (p-1 + p-2 + 1))\n]
10
1
11
INPUTBOX
259
806
408
866
beta-minimum
2.4
1
0
Number
INPUTBOX
411
806
560
866
beta-maximum
4.91
1
0
Number
SLIDER
259
868
408
901
delta-1
delta-1
0
10
0.0
0.01
1
NIL
HORIZONTAL
SLIDER
411
868
560
901
delta-2
delta-2
0
10
0.09
0.01
1
NIL
HORIZONTAL
MONITOR
128
857
256
902
NIL
min-delta-1
10
1
11
BUTTON
563
806
650
839
Scaled Beta
set-scaled-beta-parameters
NIL
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
BUTTON
563
868
649
901
Auto delta-1
set-delta-1
NIL
1
T
OBSERVER
NIL
NIL
NIL
NIL
1
MONITOR
102
757
255
802
maximum-beta-variance
ifelse-value (distribution = \"scaled-beta\") [\n (desired-beta-mean - desired-beta-minimum) * (desired-beta-maximum - desired-beta-mean)\n] [\n desired-beta-mean * (1 - desired-beta-mean)\n]
10
1
11
@#$#@#$#@
# Code for sampling from various continuous distributions
This program shows briefly how to implement various continuous distributions in NetLogo, using the gamma distribution. The details are from Knuth (1998, pp. 133-134). The code is implemented in the Code tab, and you can use the Interface tab to explore different settings.
## Sampling from the beta distribution
Essentially, for a beta distribution with parameters `a` and `b`, you can do the following:
```
to-report random-beta [a b]
let x random-gamma a 1
report x / (x + random-gamma b 1)
end
```
Knuth's implementation of the gamma distribution won't accept parameters less than 0.5 as this will lead to computation of a negative square root. To solve this, Knuth cites Jöhnk (1964), with the following code:
```
let y-a (random-float 1) ^ (1 / a)
let y-b (random-float 1) ^ (1 / b)
while [ y-a + y-b > 1 ] [
set y-a (random-float 1) ^ (1 / a)
set y-b (random-float 1) ^ (1 / b)
]
report y-a / (y-a + y-b)
```
## Sampling from the Chi-square distribution
The gamma distribution can be used to sample a Chi-square distribution with degrees of freedom `df` thus:
```
to-report random-chi-square [ df ]
report 2 * (random-gamma (df / 2) 1)
end
```
## Sampling from the F-distribution
Knuth (ibid.) gives two options for sampling from the F distribution with degrees of freedom parameters `df-1` and `df-2`.
### Using the Chi-square distribtion
```
to-report random-f [ df-1 df-2 ]
report (df-2 * random-chi-square df-1) / (df-1 * random-chi-square df-2)
end
```
### Using the beta distribution
```
to-report random-f [ df-1 df-2 ]
let y random-beta (df-1 / 2) (df-2 / 2)
report (df-2 * y) / (df-1 * (1 - y))
end
```
## Knuth's `random-gamma`
Knuth's algorithm for sampling from the gamma distribution lacks the `lambda` parameter that NetLogo's `random-gamma` provides. The following is what is implemented in the Code tab, without keeping track of how many iterations are required. Note the use of `sqrt2am1` to save computing the same constant multiple times. Note also that when defining `y`, Knuth effectively says `let y tan random-float pi`, but this assumes a `tan` function that takes radians, rather than degrees, as argument.
```
to-report knuth-random-gamma [ a ]
let sqrt2am1 sqrt ((2 * a) - 1)
let ok false
let result 0
while [ not ok ] [
let y tan random-float 180
let x (sqrt2am1 * y) + (a - 1)
if x > 0 [
let v random-float 1
if v <= (1 + (y * y)) * exp ( ((a - 1) * ln (x / (a - 1))) - (sqrt2am1 * y) ) [
set result x
set ok true
]
]
]
report result
end
```
# References
Jöhnk, M. D. (1964) Erzeugung von betaverteilten und gammaverteilten Zufallszahlen _Metrika_ **8**, 5-15. doi:[10.1007/BF02613706](https://doi.org/10.1007/BF02613706)
Knuth, D. E. (1998) _The Art of Computer Programming Volume 2: Seminumerical Algorithms_ Third Edition. Boston, MA, USA: Addison-Wesley. See [the Wikipedia page on The Art of Computer Programming](https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming)
@#$#@#$#@
default
true
0
Polygon -7500403 true true 150 5 40 250 150 205 260 250
airplane
true
0
Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15
arrow
true
0
Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150
box
false
0
Polygon -7500403 true true 150 285 285 225 285 75 150 135
Polygon -7500403 true true 150 135 15 75 150 15 285 75
Polygon -7500403 true true 15 75 15 225 150 285 150 135
Line -16777216 false 150 285 150 135
Line -16777216 false 150 135 15 75
Line -16777216 false 150 135 285 75
bug
true
0
Circle -7500403 true true 96 182 108
Circle -7500403 true true 110 127 80
Circle -7500403 true true 110 75 80
Line -7500403 true 150 100 80 30
Line -7500403 true 150 100 220 30
butterfly
true
0
Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240
Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240
Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163
Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165
Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225
Circle -16777216 true false 135 90 30
Line -16777216 false 150 105 195 60
Line -16777216 false 150 105 105 60
car
false
0
Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180
Circle -16777216 true false 180 180 90
Circle -16777216 true false 30 180 90
Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89
Circle -7500403 true true 47 195 58
Circle -7500403 true true 195 195 58
circle
false
0
Circle -7500403 true true 0 0 300
circle 2
false
0
Circle -7500403 true true 0 0 300
Circle -16777216 true false 30 30 240
cow
false
0
Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167
Polygon -7500403 true true 73 210 86 251 62 249 48 208
Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123
cylinder
false
0
Circle -7500403 true true 0 0 300
dot
false
0
Circle -7500403 true true 90 90 120
face happy
false
0
Circle -7500403 true true 8 8 285
Circle -16777216 true false 60 75 60
Circle -16777216 true false 180 75 60
Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240
face neutral
false
0
Circle -7500403 true true 8 7 285
Circle -16777216 true false 60 75 60
Circle -16777216 true false 180 75 60
Rectangle -16777216 true false 60 195 240 225
face sad
false
0
Circle -7500403 true true 8 8 285
Circle -16777216 true false 60 75 60
Circle -16777216 true false 180 75 60
Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183
fish
false
0
Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166
Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165
Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60
Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166
Circle -16777216 true false 215 106 30
flag
false
0
Rectangle -7500403 true true 60 15 75 300
Polygon -7500403 true true 90 150 270 90 90 30
Line -7500403 true 75 135 90 135
Line -7500403 true 75 45 90 45
flower
false
0
Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135
Circle -7500403 true true 85 132 38
Circle -7500403 true true 130 147 38
Circle -7500403 true true 192 85 38
Circle -7500403 true true 85 40 38
Circle -7500403 true true 177 40 38
Circle -7500403 true true 177 132 38
Circle -7500403 true true 70 85 38
Circle -7500403 true true 130 25 38
Circle -7500403 true true 96 51 108
Circle -16777216 true false 113 68 74
Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218
Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240
house
false
0
Rectangle -7500403 true true 45 120 255 285
Rectangle -16777216 true false 120 210 180 285
Polygon -7500403 true true 15 120 150 15 285 120
Line -16777216 false 30 120 270 120
leaf
false
0
Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195
Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195
line
true
0
Line -7500403 true 150 0 150 300
line half
true
0
Line -7500403 true 150 0 150 150
pentagon
false
0
Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120
person
false
0
Circle -7500403 true true 110 5 80
Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90
Rectangle -7500403 true true 127 79 172 94
Polygon -7500403 true true 195 90 240 150 225 180 165 105
Polygon -7500403 true true 105 90 60 150 75 180 135 105
plant
false
0
Rectangle -7500403 true true 135 90 165 300
Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285
Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285
Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210
Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135
Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135
Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60
Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90
sheep
false
15
Circle -1 true true 203 65 88
Circle -1 true true 70 65 162
Circle -1 true true 150 105 120
Polygon -7500403 true false 218 120 240 165 255 165 278 120
Circle -7500403 true false 214 72 67
Rectangle -1 true true 164 223 179 298
Polygon -1 true true 45 285 30 285 30 240 15 195 45 210
Circle -1 true true 3 83 150
Rectangle -1 true true 65 221 80 296
Polygon -1 true true 195 285 210 285 210 240 240 210 195 210
Polygon -7500403 true false 276 85 285 105 302 99 294 83
Polygon -7500403 true false 219 85 210 105 193 99 201 83
square
false
0
Rectangle -7500403 true true 30 30 270 270
square 2
false
0
Rectangle -7500403 true true 30 30 270 270
Rectangle -16777216 true false 60 60 240 240
star
false
0
Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108
target
false
0
Circle -7500403 true true 0 0 300
Circle -16777216 true false 30 30 240
Circle -7500403 true true 60 60 180
Circle -16777216 true false 90 90 120
Circle -7500403 true true 120 120 60
tree
false
0
Circle -7500403 true true 118 3 94
Rectangle -6459832 true false 120 195 180 300
Circle -7500403 true true 65 21 108
Circle -7500403 true true 116 41 127
Circle -7500403 true true 45 90 120
Circle -7500403 true true 104 74 152
triangle
false
0
Polygon -7500403 true true 150 30 15 255 285 255
triangle 2
false
0
Polygon -7500403 true true 150 30 15 255 285 255
Polygon -16777216 true false 151 99 225 223 75 224
truck
false
0
Rectangle -7500403 true true 4 45 195 187
Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194
Rectangle -1 true false 195 60 195 105
Polygon -16777216 true false 238 112 252 141 219 141 218 112
Circle -16777216 true false 234 174 42
Rectangle -7500403 true true 181 185 214 194
Circle -16777216 true false 144 174 42
Circle -16777216 true false 24 174 42
Circle -7500403 false true 24 174 42
Circle -7500403 false true 144 174 42
Circle -7500403 false true 234 174 42
turtle
true
0
Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210
Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105
Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105
Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87
Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210
Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99
wheel
false
0
Circle -7500403 true true 3 3 294
Circle -16777216 true false 30 30 240
Line -7500403 true 150 285 150 15
Line -7500403 true 15 150 285 150
Circle -7500403 true true 120 120 60
Line -7500403 true 216 40 79 269
Line -7500403 true 40 84 269 221
Line -7500403 true 40 216 269 79
Line -7500403 true 84 40 221 269
wolf
false
0
Polygon -16777216 true false 253 133 245 131 245 133
Polygon -7500403 true true 2 194 13 197 30 191 38 193 38 205 20 226 20 257 27 265 38 266 40 260 31 253 31 230 60 206 68 198 75 209 66 228 65 243 82 261 84 268 100 267 103 261 77 239 79 231 100 207 98 196 119 201 143 202 160 195 166 210 172 213 173 238 167 251 160 248 154 265 169 264 178 247 186 240 198 260 200 271 217 271 219 262 207 258 195 230 192 198 210 184 227 164 242 144 259 145 284 151 277 141 293 140 299 134 297 127 273 119 270 105
Polygon -7500403 true true -1 195 14 180 36 166 40 153 53 140 82 131 134 133 159 126 188 115 227 108 236 102 238 98 268 86 269 92 281 87 269 103 269 113
x
false
0
Polygon -7500403 true true 270 75 225 30 30 225 75 270
Polygon -7500403 true true 30 75 75 30 270 225 225 270
@#$#@#$#@
NetLogo 6.3.0
@#$#@#$#@
@#$#@#$#@
@#$#@#$#@
@#$#@#$#@