-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathplot.lua
43 lines (34 loc) · 1.68 KB
/
plot.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
-- PLOT RESULTS
require "torch"
require "nn"
require "gnuplot"
local cmd = torch.CmdLine()
-- Options
cmd:option("-checkpoint", "checkpoints/checkpoint11/checkpoint_final.t7")
cmd:option("-outputDir", "checkpoints/checkpoint11")
local opt = cmd:parse(arg)
assert(opt.checkpoint ~= "", "Need a trained network file to load.")
local checkpoint = torch.load(opt.checkpoint)
local trainLossHistory = torch.Tensor(checkpoint.trainLossHistory)
local trainAccHistory = torch.Tensor(checkpoint.trainAccHistory)
local valLossHistory = torch.Tensor(checkpoint.valLossHistory)
local valAccHistory = torch.Tensor(checkpoint.valAccHistory)
local epochs = torch.Tensor(checkpoint.epochs)
assert(epochs:size()[1] == trainLossHistory:size()[1], "The number of epochs must correspond to the number of train loss history points.")
assert(epochs:size()[1] == trainAccHistory:size()[1], "The number of epochs must correspond to the number of train accuracy history points.")
assert(epochs:size()[1] == valLossHistory:size()[1], "The number of epochs must correspond to the number of val loss history points.")
assert(epochs:size()[1] == valAccHistory:size()[1], "The number of epochs must correspond to the number of val accuracy history points.")
gnuplot.pngfigure(paths.concat(opt.outputDir, "training-loss.png"))
gnuplot.title("Training Loss")
gnuplot.xlabel("epoch")
gnuplot.ylabel("loss")
gnuplot.plot(epochs, trainLossHistory, "-")
gnuplot.plotflush()
gnuplot.pngfigure(paths.concat(opt.outputDir, "accuracy.png"))
gnuplot.title("Accuracy Fitting")
gnuplot.xlabel("epoch")
gnuplot.ylabel("accuracy")
gnuplot.plot(
{"Training", epochs, trainAccHistory, "-"},
{"Validation", epochs, valAccHistory, "-"})
gnuplot.plotflush()