-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDockerfile
128 lines (109 loc) · 3.75 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
ARG CUDA_VERSION=11.8.0
ARG OS_VERSION=22.04
ARG USER_ID=u29u30
# Define base image.
# 1. Using from NVIDIA
# [ref] https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html#framework-matrix-2023
# [ref] https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
# FROM nvcr.io/nvidia/pytorch:23.10-py3
# 2. Building from scratch
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${OS_VERSION}
# 3. Exisitng image
# FROM nvsf_nerf:v1
# metainformation
# LABEL org.opencontainers.image.version = "0.1.0"
# Variables used at build time.
# CUDA architectures, required by Colmap and tiny-cuda-nn.
# NOTE: Most commonly used GPU architectures are included and supported here. To speedup the image build process remove all architectures but the one of your explicit GPU.
# Find details here: https://developer.nvidia.com/cuda-gpus (8.6 translates to 86 in the line below) or in the docs.
# ARG CUDA_ARCHITECTURES=90;89;86;80;75;61
ARG CUDA_ARCHITECTURES=61
# Set environment variables.
## Set non-interactive to prevent asking for user inputs blocking image creation.
ENV DEBIAN_FRONTEND=noninteractive
## Set timezone as it is required by some packages.
ENV TZ=Europe/Berlin
## CUDA Home, required to find CUDA in some packages.
ENV CUDA_HOME="/usr/local/cuda"
# Install required apt packages and clear cache afterwards.
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
cmake \
curl \
ffmpeg \
git \
libatlas-base-dev \
libboost-filesystem-dev \
libboost-graph-dev \
libboost-program-options-dev \
libboost-system-dev \
libboost-test-dev \
libhdf5-dev \
libcgal-dev \
libeigen3-dev \
libflann-dev \
libfreeimage-dev \
libgflags-dev \
libglew-dev \
libglib2.0-0 \
libgoogle-glog-dev \
libmetis-dev \
libprotobuf-dev \
libqt5opengl5-dev \
libsm6 \
libxext6 \
libxrender-dev \
libsqlite3-dev \
libsuitesparse-dev \
ninja-build \
protobuf-compiler \
python-is-python3 \
python3.10-dev \
python3-pip \
qtbase5-dev \
vim-tiny \
wget \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
RUN apt-get update && \
apt-get install --reinstall -y \
libmpich-dev \
hwloc-nox \
libmpich12 \
mpich
# Add glog path to LD_LIBRARY_PATH.
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/lib"
# Certificates for HPC
ADD CA.crt /usr/local/share/ca-certificates/CA.crt
RUN echo CA.crt >> /etc/ca-certificates.conf
RUN chmod 644 /usr/local/share/ca-certificates/CA.crt && update-ca-certificates
# Upgrade pip and install packages.
RUN python3.10 -m pip install --no-cache-dir --upgrade pip "setuptools<70.0" pathtools promise pybind11
SHELL ["/bin/bash", "-c"]
# Install pytorch and submodules
RUN CUDA_VER=${CUDA_VERSION%.*} && CUDA_VER=${CUDA_VER//./} && python3.10 -m pip install --no-cache-dir \
torch==2.1.2+cu${CUDA_VER} \
torchvision==0.16.2+cu${CUDA_VER} \
--extra-index-url https://download.pytorch.org/whl/cu${CUDA_VER}
# Install tynyCUDNN (we need to set the target architectures as environment variable first).
ENV TCNN_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES}
RUN python3.10 -m pip install --no-cache-dir git+https://github.com/NVlabs/tiny-cuda-nn.git#subdirectory=bindings/torch
# Change working directory
WORKDIR /my_workspace
# Copy files to working dir folder
COPY . .
# [Debug] Check if files are there
# RUN ls -alh /my_workspace
# Install requirements
RUN python3.10 -m pip install -r requirements.txt
# Install torch extensions
RUN python3.10 -m pip install \
nvsf/nerf/raymarching \
nvsf/nerf/chamfer3D
# Install nvsf
RUN pip install -e .
# # Make sure nvsf is installed
RUN python -c "import nvsf; print(nvsf.__version__)"
# Bash as default entrypoint.
CMD /bin/bash -l