-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
91 lines (77 loc) · 3.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from os.path import join, exists
from os import makedirs
import numpy as np
import h5py
from scipy.stats import norm, beta
def map_mhc(rawfile, outdir, dt, pseudo_seq_dict):
alleles_not_recognized = set()
with open(rawfile) as f, \
open(join(outdir, dt+'.mhc'), 'w') as f1, \
open(join(outdir, dt+'.pep'), 'w') as f2, \
open(join(outdir, dt+'.label'), 'w') as f3:
for idx, x in enumerate(f):
line = x.split()
prefix = '>mhc_seq' + str(idx) + '\t'
if line[2] not in pseudo_seq_dict:
alleles_not_recognized.add(line[2])
continue
f1.write(prefix + pseudo_seq_dict[line[2]]+'\n')
f2.write(prefix + line[0]+'\n')
f3.write(prefix + line[1]+'\n')
if len(alleles_not_recognized)>0:
print 'The following alleles are not recognized:', alleles_not_recognized
def padseq(file2pad, pad2len, padding = 'J', padded_suffix='.padded'):
with open(file2pad) as fin, open(file2pad+padded_suffix, 'w') as fout:
for idx, x in enumerate(fin):
line = x.split()
seq = list(line[1])
assert(len(seq)<=pad2len)
fout.write(line[0] + '\t' + ''.join(seq + [padding]*(pad2len - len(seq))) +'\n')
def cal_mean(params, mhc_class, eps=0.01):
return params[:, :, 0] if mhc_class=='2' else (params[:, :, 0] / (params[:, :, 0] + params[:, :, 1]) - eps) / (1-2*eps)
def cal_var(params, mhc_class, eps=0.01):
if mhc_class=='2':
return params[:, :, 1]**2
else:
alpha = params[:, :, 0]
beta = params[:, :, 1]
return alpha * beta / (alpha+beta)**2 / (alpha+beta+1) /((1-2*eps)**2)
def binding_likelihood(params, mhc_class, thresh=1-np.log(500)/np.log(50000), eps=0.01):
if mhc_class=='2':
return 1 - norm.cdf(thresh, loc=params[:, 0], scale=params[:, 1])
else:
return 1 - beta.cdf(eps+(1-2*eps)*thresh, params[:, 0], params[:, 1])
def combine_cv(datadir, trials, inits, mhc_class):
models2combine = [
join(datadir, 'PUFFIN.trial{}.init{}'.format(trial+1, init+1)) \
for init in inits for trial in trials]
combine_pred = join(datadir, 'PUFFIN.combined')
allpred = []
for predir in models2combine:
batch=1
if not exists(join(predir, 'h5.batch'+str(batch))):
print 'file doesn\'t exist! {}'.format(join(predir, 'h5.batch'+str(batch)))
continue
#assert(False)
while exists(join(predir, 'h5.batch'+str(batch))):
with h5py.File(join(predir, 'h5.batch'+str(batch)), 'r') as f:
newdata = f['pred'][()]
if np.sum(np.isnan(newdata)) > 0:
print batch, predir, np.sum(np.isnan(newdata))
pred = np.vstack((
pred, newdata)) if batch > 1 else newdata
batch += 1
allpred.append(pred)
allpred = np.asarray(allpred)
allmean = cal_mean(allpred, mhc_class)
allvar = cal_var(allpred, mhc_class)
allstd = np.sqrt(allvar)
mean_pred = np.mean(allmean, axis=0)
epistemic = np.var(allmean, axis=0)
aleatoric = np.mean(allstd, axis=0)**2
bl = binding_likelihood(np.mean(allpred, axis=0), mhc_class)
out = np.vstack((mean_pred, epistemic, aleatoric, bl)).transpose()
with open(combine_pred, 'w') as f:
f.write('{}\n'.format('\t'.join(['mean_pred', 'epistemic_var', 'aleatoric_var', 'binding_likelihood'])))
for x in out:
f.write('{}\n'.format('\t'.join(map(str, x))))