-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathShiftSchedulingSat.cs
524 lines (460 loc) · 20.6 KB
/
ShiftSchedulingSat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;
/// <summary>
/// Creates a shift scheduling problem and solves it
/// </summary>
public class ShiftSchedulingSat
{
static void Main(string[] args)
{
SolveShiftScheduling();
}
static void SolveShiftScheduling()
{
int numEmployees = 8;
int numWeeks = 3;
var shifts = new[] { "O", "M", "A", "N" };
// Fixed assignment: (employee, shift, day).
// This fixes the first 2 days of the schedule.
var fixedAssignments = new(int Employee, int Shift, int Day)[] {
(0, 0, 0), (1, 0, 0), (2, 1, 0), (3, 1, 0), (4, 2, 0), (5, 2, 0), (6, 2, 3), (7, 3, 0),
(0, 1, 1), (1, 1, 1), (2, 2, 1), (3, 2, 1), (4, 2, 1), (5, 0, 1), (6, 0, 1), (7, 3, 1),
};
// Request: (employee, shift, day, weight)
// A negative weight indicates that the employee desire this assignment.
var requests = new(int Employee, int Shift, int Day,
int Weight)[] {// Employee 3 wants the first Saturday off.
(3, 0, 5, -2),
// Employee 5 wants a night shift on the second Thursday.
(5, 3, 10, -2),
// Employee 2 does not want a night shift on the first Friday.
(2, 3, 4, 4)
};
// Shift constraints on continuous sequence :
// (shift, hard_min, soft_min, min_penalty,
// soft_max, hard_max, max_penalty)
var shiftConstraints =
new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[] {
// One or two consecutive days of rest, this is a hard constraint.
(0, 1, 1, 0, 2, 2, 0),
// Between 2 and 3 consecutive days of night shifts, 1 and 4 are
// possible but penalized.
(3, 1, 2, 20, 3, 4, 5),
};
// Weekly sum constraints on shifts days:
// (shift, hardMin, softMin, minPenalty,
// softMax, hardMax, maxPenalty)
var weeklySumConstraints =
new(int Shift, int HardMin, int SoftMin, int MinPenalty, int SoftMax, int HardMax, int MaxPenalty)[] {
// Constraints on rests per week.
(0, 1, 2, 7, 2, 3, 4),
// At least 1 night shift per week (penalized). At most 4 (hard).
(3, 0, 1, 3, 4, 4, 0),
};
// Penalized transitions:
// (previous_shift, next_shift, penalty (0 means forbidden))
var penalizedTransitions = new(int PreviousShift, int NextShift, int Penalty)[] {
// Afternoon to night has a penalty of 4.
(2, 3, 4),
// Night to morning is forbidden.
(3, 1, 0),
};
// daily demands for work shifts (morning, afternon, night) for each day
// of the week starting on Monday.
var weeklyCoverDemands = new int[][] {
new[] { 2, 3, 1 }, // Monday
new[] { 2, 3, 1 }, // Tuesday
new[] { 2, 2, 2 }, // Wednesday
new[] { 2, 3, 1 }, // Thursday
new[] { 2, 2, 2 }, // Friday
new[] { 1, 2, 3 }, // Saturday
new[] { 1, 3, 1 }, // Sunday
};
// Penalty for exceeding the cover constraint per shift type.
var excessCoverPenalties = new[] { 2, 2, 5 };
var numDays = numWeeks * 7;
var numShifts = shifts.Length;
var model = new CpModel();
BoolVar[,,] work = new BoolVar[numEmployees, numShifts, numDays];
foreach (int e in Range(numEmployees))
{
foreach (int s in Range(numShifts))
{
foreach (int d in Range(numDays))
{
work[e, s, d] = model.NewBoolVar($"work{e}_{s}_{d}");
}
}
}
// Linear terms of the objective in a minimization context.
LinearExprBuilder obj = LinearExpr.NewBuilder();
// Exactly one shift per day.
foreach (int e in Range(numEmployees))
{
foreach (int d in Range(numDays))
{
var temp = new BoolVar[numShifts];
foreach (int s in Range(numShifts))
{
temp[s] = work[e, s, d];
}
model.Add(LinearExpr.Sum(temp) == 1);
}
}
// Fixed assignments.
foreach (var (e, s, d) in fixedAssignments)
{
model.Add(work[e, s, d] == 1);
}
// Employee requests
foreach (var (e, s, d, w) in requests)
{
obj.AddTerm(work[e, s, d], w);
}
// Shift constraints
foreach (var constraint in shiftConstraints)
{
foreach (int e in Range(numEmployees))
{
var works = new BoolVar[numDays];
foreach (int d in Range(numDays))
{
works[d] = work[e, constraint.Shift, d];
}
var (variables, coeffs) = AddSoftSequenceConstraint(
model, works, constraint.HardMin, constraint.SoftMin, constraint.MinPenalty, constraint.SoftMax,
constraint.HardMax, constraint.MaxPenalty,
$"shift_constraint(employee {e}, shift {constraint.Shift}");
obj.AddWeightedSum(variables, coeffs);
}
}
// Weekly sum constraints
foreach (var constraint in weeklySumConstraints)
{
foreach (int e in Range(numEmployees))
{
foreach (int w in Range(numWeeks))
{
var works = new BoolVar[7];
foreach (int d in Range(7))
{
works[d] = work[e, constraint.Shift, d + w * 7];
}
var (variables, coeffs) = AddSoftSumConstraint(
model, works, constraint.HardMin, constraint.SoftMin, constraint.MinPenalty, constraint.SoftMax,
constraint.HardMax, constraint.MaxPenalty,
$"weekly_sum_constraint(employee {e}, shift {constraint.Shift}, week {w}");
obj.AddWeightedSum(variables, coeffs);
}
}
}
// Penalized transitions
foreach (var penalizedTransition in penalizedTransitions)
{
foreach (int e in Range(numEmployees))
{
foreach (int d in Range(numDays - 1))
{
var transition = new List<ILiteral>() { work[e, penalizedTransition.PreviousShift, d].Not(),
work[e, penalizedTransition.NextShift, d + 1].Not() };
if (penalizedTransition.Penalty == 0)
{
model.AddBoolOr(transition);
}
else
{
var transVar = model.NewBoolVar($"transition (employee {e}, day={d}");
transition.Add(transVar);
model.AddBoolOr(transition);
obj.AddTerm(transVar, penalizedTransition.Penalty);
}
}
}
}
// Cover constraints
foreach (int s in Range(1, numShifts))
{
foreach (int w in Range(numWeeks))
{
foreach (int d in Range(7))
{
var works = new BoolVar[numEmployees];
foreach (int e in Range(numEmployees))
{
works[e] = work[e, s, w * 7 + d];
}
// Ignore off shift
var minDemand = weeklyCoverDemands[d][s - 1];
var worked = model.NewIntVar(minDemand, numEmployees, "");
model.Add(LinearExpr.Sum(works) == worked);
var overPenalty = excessCoverPenalties[s - 1];
if (overPenalty > 0)
{
var name = $"excess_demand(shift={s}, week={w}, day={d}";
var excess = model.NewIntVar(0, numEmployees - minDemand, name);
model.Add(excess == worked - minDemand);
obj.AddTerm(excess, overPenalty);
}
}
}
}
// Objective
model.Minimize(obj);
// Solve model
var solver = new CpSolver();
solver.StringParameters = "num_search_workers:8, log_search_progress: true, max_time_in_seconds:30";
var status = solver.Solve(model);
// Print solution
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
Console.WriteLine();
var header = " ";
for (int w = 0; w < numWeeks; w++)
{
header += "M T W T F S S ";
}
Console.WriteLine(header);
foreach (int e in Range(numEmployees))
{
var schedule = "";
foreach (int d in Range(numDays))
{
foreach (int s in Range(numShifts))
{
if (solver.BooleanValue(work[e, s, d]))
{
schedule += shifts[s] + " ";
}
}
}
Console.WriteLine($"worker {e}: {schedule}");
}
Console.WriteLine();
Console.WriteLine("Penalties:");
// foreach (var (i, var) in objBoolVars.Select((x, i) => (i, x)))
// {
// if (solver.BooleanValue(var))
// {
// var penalty = objBoolCoeffs[i];
// if (penalty > 0)
// {
// Console.WriteLine($" {var.Name()} violated, penalty={penalty}");
// }
// else
// {
// Console.WriteLine($" {var.Name()} fulfilled, gain={-penalty}");
// }
// }
// }
// foreach (var (i, var) in objIntVars.Select((x, i) => (i, x)))
// {
// if (solver.Value(var) > 0)
// {
// Console.WriteLine(
// $" {var.Name()} violated by {solver.Value(var)}, linear penalty={objIntCoeffs[i]}");
// }
// }
Console.WriteLine();
Console.WriteLine("Statistics");
Console.WriteLine($" - status : {status}");
Console.WriteLine($" - conflicts : {solver.NumConflicts()}");
Console.WriteLine($" - branches : {solver.NumBranches()}");
Console.WriteLine($" - wall time : {solver.WallTime()}");
}
}
/// <summary>
/// Filters an isolated sub-sequence of variables assigned to True.
/// Extract the span of Boolean variables[start, start + length), negate them,
/// and if there is variables to the left / right of this span, surround the
/// span by them in non negated form.
/// </summary>
/// <param name="works">A list of variables to extract the span from.</param>
/// <param name="start">The start to the span.</param>
/// <param name="length">The length of the span.</param>
/// <returns>An array of variables which conjunction will be false if the
/// sub-list is assigned to True, and correctly bounded by variables assigned
/// to False, or by the start or end of works.</returns>
static ILiteral[] NegatedBoundedSpan(BoolVar[] works, int start, int length)
{
var sequence = new List<ILiteral>();
if (start > 0)
sequence.Add(works[start - 1]);
foreach (var i in Range(length))
sequence.Add(works[start + i].Not());
if (start + length < works.Length)
sequence.Add(works[start + length]);
return sequence.ToArray();
}
/// <summary>
/// Sequence constraint on true variables with soft and hard bounds.
/// This constraint look at every maximal contiguous sequence of variables
/// assigned to true. If forbids sequence of length < hardMin or >
/// hardMax. Then it creates penalty terms if the length is < softMin or
/// > softMax.
/// </summary>
/// <param name="model">The sequence constraint is built on this
/// model.</param> <param name="works">A list of Boolean variables.</param>
/// <param name="hardMin">Any sequence of true variables must have a length of
/// at least hardMin.</param> <param name="softMin">Any sequence should have a
/// length of at least softMin, or a linear penalty on the delta will be added
/// to the objective.</param> <param name="minCost">The coefficient of the
/// linear penalty if the length is less than softMin.</param> <param
/// name="softMax">Any sequence should have a length of at most softMax, or a
/// linear penalty on the delta will be added to the objective.</param> <param
/// name="hardMax">Any sequence of true variables must have a length of at
/// most hardMax.</param> <param name="maxCost">The coefficient of the linear
/// penalty if the length is more than softMax.</param> <param name="prefix">A
/// base name for penalty literals.</param> <returns>A tuple (costLiterals,
/// costCoefficients) containing the different penalties created by the
/// sequence constraint.</returns>
static (IEnumerable<BoolVar> costLiterals, IEnumerable<int> costCoefficients)
AddSoftSequenceConstraint(CpModel model, BoolVar[] works, int hardMin, int softMin, int minCost, int softMax,
int hardMax, int maxCost, string prefix)
{
var costLiterals = new List<BoolVar>();
var costCoefficients = new List<int>();
// Forbid sequences that are too short.
foreach (var length in Range(1, hardMin))
{
foreach (var start in Range(works.Length - length + 1))
{
model.AddBoolOr(NegatedBoundedSpan(works, start, length));
}
}
// Penalize sequences that are below the soft limit.
if (minCost > 0)
{
foreach (var length in Range(hardMin, softMin))
{
foreach (var start in Range(works.Length - length + 1))
{
var span = NegatedBoundedSpan(works, start, length).ToList();
var name = $": under_span(start={start}, length={length})";
var lit = model.NewBoolVar(prefix + name);
span.Add(lit);
model.AddBoolOr(span);
costLiterals.Add(lit);
// We filter exactly the sequence with a short length.
// The penalty is proportional to the delta with softMin.
costCoefficients.Add(minCost * (softMin - length));
}
}
}
// Penalize sequences that are above the soft limit.
if (maxCost > 0)
{
foreach (var length in Range(softMax + 1, hardMax + 1))
{
foreach (var start in Range(works.Length - length + 1))
{
var span = NegatedBoundedSpan(works, start, length).ToList();
var name = $": over_span(start={start}, length={length})";
var lit = model.NewBoolVar(prefix + name);
span.Add(lit);
model.AddBoolOr(span);
costLiterals.Add(lit);
// Cost paid is max_cost * excess length.
costCoefficients.Add(maxCost * (length - softMax));
}
}
}
// Just forbid any sequence of true variables with length hardMax + 1
foreach (var start in Range(works.Length - hardMax))
{
var temp = new List<ILiteral>();
foreach (var i in Range(start, start + hardMax + 1))
{
temp.Add(works[i].Not());
}
model.AddBoolOr(temp);
}
return (costLiterals, costCoefficients);
}
/// <summary>
/// Sum constraint with soft and hard bounds.
/// This constraint counts the variables assigned to true from works.
/// If forbids sum < hardMin or > hardMax.
/// Then it creates penalty terms if the sum is < softMin or > softMax.
/// </summary>
/// <param name="model">The sequence constraint is built on this
/// model.</param> <param name="works">A list of Boolean variables.</param>
/// <param name="hardMin">Any sequence of true variables must have a length of
/// at least hardMin.</param> <param name="softMin">Any sequence should have a
/// length of at least softMin, or a linear penalty on the delta will be added
/// to the objective.</param> <param name="minCost">The coefficient of the
/// linear penalty if the length is less than softMin.</param> <param
/// name="softMax">Any sequence should have a length of at most softMax, or a
/// linear penalty on the delta will be added to the objective.</param> <param
/// name="hardMax">Any sequence of true variables must have a length of at
/// most hardMax.</param> <param name="maxCost">The coefficient of the linear
/// penalty if the length is more than softMax.</param> <param name="prefix">A
/// base name for penalty literals.</param> <returns>A tuple (costVariables,
/// costCoefficients) containing the different penalties created by the
/// sequence constraint.</returns>
static (IEnumerable<IntVar> costVariables, IEnumerable<int> costCoefficients)
AddSoftSumConstraint(CpModel model, BoolVar[] works, int hardMin, int softMin, int minCost, int softMax,
int hardMax, int maxCost, string prefix)
{
var costVariables = new List<IntVar>();
var costCoefficients = new List<int>();
var sumVar = model.NewIntVar(hardMin, hardMax, "");
// This adds the hard constraints on the sum.
model.Add(sumVar == LinearExpr.Sum(works));
var zero = model.NewConstant(0);
// Penalize sums below the soft_min target.
if (softMin > hardMin && minCost > 0)
{
var delta = model.NewIntVar(-works.Length, works.Length, "");
model.Add(delta == (softMin - sumVar));
var excess = model.NewIntVar(0, works.Length, prefix + ": under_sum");
model.AddMaxEquality(excess, new[] { delta, zero });
costVariables.Add(excess);
costCoefficients.Add(minCost);
}
// Penalize sums above the soft_max target.
if (softMax < hardMax && maxCost > 0)
{
var delta = model.NewIntVar(-works.Length, works.Length, "");
model.Add(delta == sumVar - softMax);
var excess = model.NewIntVar(0, works.Length, prefix + ": over_sum");
model.AddMaxEquality(excess, new[] { delta, zero });
costVariables.Add(excess);
costCoefficients.Add(maxCost);
}
return (costVariables, costCoefficients);
}
/// <summary>
/// C# equivalent of Python range (start, stop)
/// </summary>
/// <param name="start">The inclusive start.</param>
/// <param name="stop">The exclusive stop.</param>
/// <returns>A sequence of integers.</returns>
static IEnumerable<int> Range(int start, int stop)
{
foreach (var i in Enumerable.Range(start, stop - start))
yield return i;
}
/// <summary>
/// C# equivalent of Python range (stop)
/// </summary>
/// <param name="stop">The exclusive stop.</param>
/// <returns>A sequence of integers.</returns>
static IEnumerable<int> Range(int stop)
{
return Range(0, stop);
}
}