-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathfurniture_moving_intervals.cs
143 lines (123 loc) · 4.35 KB
/
furniture_moving_intervals.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections;
using System.Linq;
using Google.OrTools.ConstraintSolver;
public class FurnitureMovingIntervals
{
/**
*
* Moving furnitures (scheduling) problem in Google CP Solver.
*
* Marriott & Stukey: 'Programming with constraints', page 112f
*
* Also see http://www.hakank.org/or-tools/furniture_moving.py
*
*/
private static void Solve()
{
Solver solver = new Solver("FurnitureMovingIntervals");
const int n = 4;
int[] durations = { 30, 10, 15, 15 };
int[] demand = { 3, 1, 3, 2 };
const int upper_limit = 160;
const int max_num_workers = 5;
//
// Decision variables
//
IntervalVar[] tasks = new IntervalVar[n];
for (int i = 0; i < n; ++i)
{
tasks[i] =
solver.MakeFixedDurationIntervalVar(0, upper_limit - durations[i], durations[i], false, "task_" + i);
}
// Fillers that span the whole resource and limit the available
// number of workers.
IntervalVar[] fillers = new IntervalVar[max_num_workers];
for (int i = 0; i < max_num_workers; ++i)
{
fillers[i] = solver.MakeFixedDurationIntervalVar(0, 0, upper_limit, true, "filler_" + i);
}
// Number of needed resources, to be minimized or constrained.
IntVar num_workers = solver.MakeIntVar(0, max_num_workers, "num_workers");
// Links fillers and num_workers.
for (int i = 0; i < max_num_workers; ++i)
{
solver.Add((num_workers > i) + fillers[i].PerformedExpr() == 1);
}
// Creates makespan.
IntVar[] ends = new IntVar[n];
for (int i = 0; i < n; ++i)
{
ends[i] = tasks[i].EndExpr().Var();
}
IntVar end_time = ends.Max().VarWithName("end_time");
//
// Constraints
//
IntervalVar[] all_tasks = new IntervalVar[n + max_num_workers];
int[] all_demands = new int[n + max_num_workers];
for (int i = 0; i < n; ++i)
{
all_tasks[i] = tasks[i];
all_demands[i] = demand[i];
}
for (int i = 0; i < max_num_workers; ++i)
{
all_tasks[i + n] = fillers[i];
all_demands[i + n] = 1;
}
solver.Add(all_tasks.Cumulative(all_demands, max_num_workers, "workers"));
//
// Some extra constraints to play with
//
// all tasks must end within an hour
// solver.Add(end_time <= 60);
// All tasks should start at time 0
// for(int i = 0; i < n; i++) {
// solver.Add(tasks[i].StartAt(0));
// }
// limitation of the number of people
// solver.Add(num_workers <= 3);
solver.Add(num_workers <= 4);
//
// Objective
//
// OptimizeVar obj = num_workers.Minimize(1);
OptimizeVar obj = end_time.Minimize(1);
//
// Search
//
DecisionBuilder db = solver.MakePhase(all_tasks, Solver.INTERVAL_DEFAULT);
solver.NewSearch(db, obj);
while (solver.NextSolution())
{
Console.WriteLine(num_workers.ToString() + ", " + end_time.ToString());
for (int i = 0; i < n; i++)
{
Console.WriteLine("{0} (demand:{1})", tasks[i].ToString(), demand[i]);
}
Console.WriteLine();
}
Console.WriteLine("Solutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0} ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
Solve();
}
}