-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathmax_flow.cc
1028 lines (933 loc) · 38.6 KB
/
max_flow.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/max_flow.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "ortools/graph/graph.h"
#include "ortools/graph/graphs.h"
namespace operations_research {
SimpleMaxFlow::SimpleMaxFlow() : num_nodes_(0) {}
ArcIndex SimpleMaxFlow::AddArcWithCapacity(NodeIndex tail, NodeIndex head,
FlowQuantity capacity) {
const ArcIndex num_arcs = arc_tail_.size();
num_nodes_ = std::max(num_nodes_, tail + 1);
num_nodes_ = std::max(num_nodes_, head + 1);
arc_tail_.push_back(tail);
arc_head_.push_back(head);
arc_capacity_.push_back(capacity);
return num_arcs;
}
NodeIndex SimpleMaxFlow::NumNodes() const { return num_nodes_; }
ArcIndex SimpleMaxFlow::NumArcs() const { return arc_tail_.size(); }
NodeIndex SimpleMaxFlow::Tail(ArcIndex arc) const { return arc_tail_[arc]; }
NodeIndex SimpleMaxFlow::Head(ArcIndex arc) const { return arc_head_[arc]; }
FlowQuantity SimpleMaxFlow::Capacity(ArcIndex arc) const {
return arc_capacity_[arc];
}
void SimpleMaxFlow::SetArcCapacity(ArcIndex arc, FlowQuantity capacity) {
arc_capacity_[arc] = capacity;
}
SimpleMaxFlow::Status SimpleMaxFlow::Solve(NodeIndex source, NodeIndex sink) {
const ArcIndex num_arcs = arc_capacity_.size();
arc_flow_.assign(num_arcs, 0);
underlying_max_flow_.reset();
underlying_graph_.reset();
optimal_flow_ = 0;
if (source == sink || source < 0 || sink < 0) {
return BAD_INPUT;
}
if (source >= num_nodes_ || sink >= num_nodes_) {
return OPTIMAL;
}
underlying_graph_ = std::make_unique<Graph>(num_nodes_, num_arcs);
underlying_graph_->AddNode(source);
underlying_graph_->AddNode(sink);
for (int arc = 0; arc < num_arcs; ++arc) {
underlying_graph_->AddArc(arc_tail_[arc], arc_head_[arc]);
}
underlying_graph_->Build(&arc_permutation_);
underlying_max_flow_ = std::make_unique<GenericMaxFlow<Graph>>(
underlying_graph_.get(), source, sink);
for (ArcIndex arc = 0; arc < num_arcs; ++arc) {
ArcIndex permuted_arc =
arc < arc_permutation_.size() ? arc_permutation_[arc] : arc;
underlying_max_flow_->SetArcCapacity(permuted_arc, arc_capacity_[arc]);
}
if (underlying_max_flow_->Solve()) {
optimal_flow_ = underlying_max_flow_->GetOptimalFlow();
for (ArcIndex arc = 0; arc < num_arcs; ++arc) {
ArcIndex permuted_arc =
arc < arc_permutation_.size() ? arc_permutation_[arc] : arc;
arc_flow_[arc] = underlying_max_flow_->Flow(permuted_arc);
}
}
// Translate the GenericMaxFlow::Status. It is different because NOT_SOLVED
// does not make sense in the simple api.
switch (underlying_max_flow_->status()) {
case GenericMaxFlow<Graph>::NOT_SOLVED:
return BAD_RESULT;
case GenericMaxFlow<Graph>::OPTIMAL:
return OPTIMAL;
case GenericMaxFlow<Graph>::INT_OVERFLOW:
return POSSIBLE_OVERFLOW;
case GenericMaxFlow<Graph>::BAD_INPUT:
return BAD_INPUT;
case GenericMaxFlow<Graph>::BAD_RESULT:
return BAD_RESULT;
}
return BAD_RESULT;
}
FlowQuantity SimpleMaxFlow::OptimalFlow() const { return optimal_flow_; }
FlowQuantity SimpleMaxFlow::Flow(ArcIndex arc) const { return arc_flow_[arc]; }
void SimpleMaxFlow::GetSourceSideMinCut(std::vector<NodeIndex>* result) {
if (underlying_max_flow_ == nullptr) return;
underlying_max_flow_->GetSourceSideMinCut(result);
}
void SimpleMaxFlow::GetSinkSideMinCut(std::vector<NodeIndex>* result) {
if (underlying_max_flow_ == nullptr) return;
underlying_max_flow_->GetSinkSideMinCut(result);
}
FlowModelProto SimpleMaxFlow::CreateFlowModelProto(NodeIndex source,
NodeIndex sink) const {
FlowModelProto model;
model.set_problem_type(FlowModelProto::MAX_FLOW);
for (int n = 0; n < num_nodes_; ++n) {
FlowNodeProto* node = model.add_nodes();
node->set_id(n);
if (n == source) node->set_supply(1);
if (n == sink) node->set_supply(-1);
}
for (int a = 0; a < arc_tail_.size(); ++a) {
FlowArcProto* arc = model.add_arcs();
arc->set_tail(Tail(a));
arc->set_head(Head(a));
arc->set_capacity(Capacity(a));
}
return model;
}
template <typename Graph>
GenericMaxFlow<Graph>::GenericMaxFlow(const Graph* graph, NodeIndex source,
NodeIndex sink)
: graph_(graph),
node_excess_(),
node_potential_(),
residual_arc_capacity_(),
first_admissible_arc_(),
active_nodes_(),
source_(source),
sink_(sink),
use_global_update_(true),
use_two_phase_algorithm_(true),
process_node_by_height_(true),
check_input_(true),
check_result_(true),
stats_("MaxFlow") {
SCOPED_TIME_STAT(&stats_);
DCHECK(graph->IsNodeValid(source));
DCHECK(graph->IsNodeValid(sink));
const NodeIndex max_num_nodes = Graphs<Graph>::NodeReservation(*graph_);
if (max_num_nodes > 0) {
node_excess_.Reserve(0, max_num_nodes - 1);
node_excess_.SetAll(0);
node_potential_.Reserve(0, max_num_nodes - 1);
node_potential_.SetAll(0);
first_admissible_arc_.Reserve(0, max_num_nodes - 1);
first_admissible_arc_.SetAll(Graph::kNilArc);
bfs_queue_.reserve(max_num_nodes);
active_nodes_.reserve(max_num_nodes);
}
const ArcIndex max_num_arcs = Graphs<Graph>::ArcReservation(*graph_);
if (max_num_arcs > 0) {
residual_arc_capacity_.Reserve(-max_num_arcs, max_num_arcs - 1);
residual_arc_capacity_.SetAll(0);
}
}
template <typename Graph>
bool GenericMaxFlow<Graph>::CheckInputConsistency() const {
SCOPED_TIME_STAT(&stats_);
bool ok = true;
for (ArcIndex arc = 0; arc < graph_->num_arcs(); ++arc) {
if (residual_arc_capacity_[arc] < 0) {
ok = false;
}
}
return ok;
}
template <typename Graph>
void GenericMaxFlow<Graph>::SetArcCapacity(ArcIndex arc,
FlowQuantity new_capacity) {
SCOPED_TIME_STAT(&stats_);
DCHECK_LE(0, new_capacity);
DCHECK(IsArcDirect(arc));
const FlowQuantity free_capacity = residual_arc_capacity_[arc];
const FlowQuantity capacity_delta = new_capacity - Capacity(arc);
if (capacity_delta == 0) {
return; // Nothing to do.
}
status_ = NOT_SOLVED;
if (free_capacity + capacity_delta >= 0) {
// The above condition is true if one of the two conditions is true:
// 1/ (capacity_delta > 0), meaning we are increasing the capacity
// 2/ (capacity_delta < 0 && free_capacity + capacity_delta >= 0)
// meaning we are reducing the capacity, but that the capacity
// reduction is not larger than the free capacity.
DCHECK((capacity_delta > 0) ||
(capacity_delta < 0 && free_capacity + capacity_delta >= 0));
residual_arc_capacity_.Set(arc, free_capacity + capacity_delta);
DCHECK_LE(0, residual_arc_capacity_[arc]);
} else {
// Note that this breaks the preflow invariants but it is currently not an
// issue since we restart from scratch on each Solve() and we set the status
// to NOT_SOLVED.
//
// TODO(user): The easiest is probably to allow negative node excess in
// other places than the source, but the current implementation does not
// deal with this.
SetCapacityAndClearFlow(arc, new_capacity);
}
}
template <typename Graph>
void GenericMaxFlow<Graph>::SetArcFlow(ArcIndex arc, FlowQuantity new_flow) {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsArcValid(arc));
DCHECK_GE(new_flow, 0);
const FlowQuantity capacity = Capacity(arc);
DCHECK_GE(capacity, new_flow);
// Note that this breaks the preflow invariants but it is currently not an
// issue since we restart from scratch on each Solve() and we set the status
// to NOT_SOLVED.
residual_arc_capacity_.Set(Opposite(arc), -new_flow);
residual_arc_capacity_.Set(arc, capacity - new_flow);
status_ = NOT_SOLVED;
}
template <typename Graph>
void GenericMaxFlow<Graph>::GetSourceSideMinCut(
std::vector<NodeIndex>* result) {
ComputeReachableNodes<false>(source_, result);
}
template <typename Graph>
void GenericMaxFlow<Graph>::GetSinkSideMinCut(std::vector<NodeIndex>* result) {
ComputeReachableNodes<true>(sink_, result);
}
template <typename Graph>
bool GenericMaxFlow<Graph>::CheckResult() const {
SCOPED_TIME_STAT(&stats_);
bool ok = true;
if (node_excess_[source_] != -node_excess_[sink_]) {
LOG(DFATAL) << "-node_excess_[source_] = " << -node_excess_[source_]
<< " != node_excess_[sink_] = " << node_excess_[sink_];
ok = false;
}
for (NodeIndex node = 0; node < graph_->num_nodes(); ++node) {
if (node != source_ && node != sink_) {
if (node_excess_[node] != 0) {
LOG(DFATAL) << "node_excess_[" << node << "] = " << node_excess_[node]
<< " != 0";
ok = false;
}
}
}
for (ArcIndex arc = 0; arc < graph_->num_arcs(); ++arc) {
const ArcIndex opposite = Opposite(arc);
const FlowQuantity direct_capacity = residual_arc_capacity_[arc];
const FlowQuantity opposite_capacity = residual_arc_capacity_[opposite];
if (direct_capacity < 0) {
LOG(DFATAL) << "residual_arc_capacity_[" << arc
<< "] = " << direct_capacity << " < 0";
ok = false;
}
if (opposite_capacity < 0) {
LOG(DFATAL) << "residual_arc_capacity_[" << opposite
<< "] = " << opposite_capacity << " < 0";
ok = false;
}
// The initial capacity of the direct arcs is non-negative.
if (direct_capacity + opposite_capacity < 0) {
LOG(DFATAL) << "initial capacity [" << arc
<< "] = " << direct_capacity + opposite_capacity << " < 0";
ok = false;
}
}
return ok;
}
template <typename Graph>
bool GenericMaxFlow<Graph>::AugmentingPathExists() const {
SCOPED_TIME_STAT(&stats_);
// We simply compute the reachability from the source in the residual graph.
const NodeIndex num_nodes = graph_->num_nodes();
std::vector<bool> is_reached(num_nodes, false);
std::vector<NodeIndex> to_process;
to_process.push_back(source_);
is_reached[source_] = true;
while (!to_process.empty()) {
const NodeIndex node = to_process.back();
to_process.pop_back();
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node); it.Ok();
it.Next()) {
const ArcIndex arc = it.Index();
if (residual_arc_capacity_[arc] > 0) {
const NodeIndex head = graph_->Head(arc);
if (!is_reached[head]) {
is_reached[head] = true;
to_process.push_back(head);
}
}
}
}
return is_reached[sink_];
}
template <typename Graph>
bool GenericMaxFlow<Graph>::CheckRelabelPrecondition(NodeIndex node) const {
DCHECK(IsActive(node));
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node); it.Ok();
it.Next()) {
const ArcIndex arc = it.Index();
DCHECK(!IsAdmissible(arc)) << DebugString("CheckRelabelPrecondition:", arc);
}
return true;
}
template <typename Graph>
std::string GenericMaxFlow<Graph>::DebugString(absl::string_view context,
ArcIndex arc) const {
const NodeIndex tail = Tail(arc);
const NodeIndex head = Head(arc);
return absl::StrFormat(
"%s Arc %d, from %d to %d, "
"Capacity = %d, Residual capacity = %d, "
"Flow = residual capacity for reverse arc = %d, "
"Height(tail) = %d, Height(head) = %d, "
"Excess(tail) = %d, Excess(head) = %d",
context, arc, tail, head, Capacity(arc), residual_arc_capacity_[arc],
Flow(arc), node_potential_[tail], node_potential_[head],
node_excess_[tail], node_excess_[head]);
}
template <typename Graph>
bool GenericMaxFlow<Graph>::Solve() {
status_ = NOT_SOLVED;
if (check_input_ && !CheckInputConsistency()) {
status_ = BAD_INPUT;
return false;
}
InitializePreflow();
// Deal with the case when source_ or sink_ is not inside graph_.
// Since they are both specified independently of the graph, we do need to
// take care of this corner case.
const NodeIndex num_nodes = graph_->num_nodes();
if (sink_ >= num_nodes || source_ >= num_nodes) {
// Behave like a normal graph where source_ and sink_ are disconnected.
// Note that the arc flow is set to 0 by InitializePreflow().
status_ = OPTIMAL;
return true;
}
if (use_global_update_) {
RefineWithGlobalUpdate();
} else {
Refine();
}
if (check_result_) {
if (!CheckResult()) {
status_ = BAD_RESULT;
return false;
}
if (GetOptimalFlow() < kMaxFlowQuantity && AugmentingPathExists()) {
LOG(ERROR) << "The algorithm terminated, but the flow is not maximal!";
status_ = BAD_RESULT;
return false;
}
}
DCHECK_EQ(node_excess_[sink_], -node_excess_[source_]);
status_ = OPTIMAL;
if (GetOptimalFlow() == kMaxFlowQuantity && AugmentingPathExists()) {
// In this case, we are sure that the flow is > kMaxFlowQuantity.
status_ = INT_OVERFLOW;
}
IF_STATS_ENABLED(VLOG(1) << stats_.StatString());
return true;
}
template <typename Graph>
void GenericMaxFlow<Graph>::InitializePreflow() {
SCOPED_TIME_STAT(&stats_);
// InitializePreflow() clears the whole flow that could have been computed
// by a previous Solve(). This is not optimal in terms of complexity.
// TODO(user): find a way to make the re-solving incremental (not an obvious
// task, and there has not been a lot of literature on the subject.)
node_excess_.SetAll(0);
const ArcIndex num_arcs = graph_->num_arcs();
for (ArcIndex arc = 0; arc < num_arcs; ++arc) {
SetCapacityAndClearFlow(arc, Capacity(arc));
}
// All the initial heights are zero except for the source whose height is
// equal to the number of nodes and will never change during the algorithm.
node_potential_.SetAll(0);
node_potential_.Set(source_, graph_->num_nodes());
// Initially no arcs are admissible except maybe the one leaving the source,
// but we treat the source in a special way, see
// SaturateOutgoingArcsFromSource().
const NodeIndex num_nodes = graph_->num_nodes();
for (NodeIndex node = 0; node < num_nodes; ++node) {
first_admissible_arc_[node] = Graph::kNilArc;
}
}
// Note(user): Calling this function will break the property on the node
// potentials because of the way we cancel flow on cycle. However, we only call
// that at the end of the algorithm, or just before a GlobalUpdate() that will
// restore the precondition on the node potentials.
template <typename Graph>
void GenericMaxFlow<Graph>::PushFlowExcessBackToSource() {
SCOPED_TIME_STAT(&stats_);
const NodeIndex num_nodes = graph_->num_nodes();
// We implement a variation of Tarjan's strongly connected component algorithm
// to detect cycles published in: Tarjan, R. E. (1972), "Depth-first search
// and linear graph algorithms", SIAM Journal on Computing. A description can
// also be found in wikipedia.
// Stored nodes are settled nodes already stored in the
// reverse_topological_order (except the sink_ that we do not actually store).
std::vector<bool> stored(num_nodes, false);
stored[sink_] = true;
// The visited nodes that are not yet stored are all the nodes from the
// source_ to the current node in the current dfs branch.
std::vector<bool> visited(num_nodes, false);
visited[sink_] = true;
// Stack of arcs to explore in the dfs search.
// The current node is Head(arc_stack.back()).
std::vector<ArcIndex> arc_stack;
// Increasing list of indices into the arc_stack that correspond to the list
// of arcs in the current dfs branch from the source_ to the current node.
std::vector<int> index_branch;
// Node in reverse_topological_order in the final dfs tree.
std::vector<NodeIndex> reverse_topological_order;
// We start by pushing all the outgoing arcs from the source on the stack to
// avoid special conditions in the code. As a result, source_ will not be
// stored in reverse_topological_order, and this is what we want.
for (OutgoingArcIterator it(*graph_, source_); it.Ok(); it.Next()) {
const ArcIndex arc = it.Index();
const FlowQuantity flow = Flow(arc);
if (flow > 0) {
arc_stack.push_back(arc);
}
}
visited[source_] = true;
// Start the dfs on the subgraph formed by the direct arcs with positive flow.
while (!arc_stack.empty()) {
const NodeIndex node = Head(arc_stack.back());
// If the node is visited, it means we have explored all its arcs and we
// have just backtracked in the dfs. Store it if it is not already stored
// and process the next arc on the stack.
if (visited[node]) {
if (!stored[node]) {
stored[node] = true;
reverse_topological_order.push_back(node);
DCHECK(!index_branch.empty());
index_branch.pop_back();
}
arc_stack.pop_back();
continue;
}
// The node is a new unexplored node, add all its outgoing arcs with
// positive flow to the stack and go deeper in the dfs.
DCHECK(!stored[node]);
DCHECK(index_branch.empty() ||
(arc_stack.size() - 1 > index_branch.back()));
visited[node] = true;
index_branch.push_back(arc_stack.size() - 1);
for (OutgoingArcIterator it(*graph_, node); it.Ok(); it.Next()) {
const ArcIndex arc = it.Index();
const FlowQuantity flow = Flow(arc);
const NodeIndex head = Head(arc);
if (flow > 0 && !stored[head]) {
if (!visited[head]) {
arc_stack.push_back(arc);
} else {
// There is a cycle.
// Find the first index to consider,
// arc_stack[index_branch[cycle_begin]] will be the first arc on the
// cycle.
int cycle_begin = index_branch.size();
while (cycle_begin > 0 &&
Head(arc_stack[index_branch[cycle_begin - 1]]) != head) {
--cycle_begin;
}
// Compute the maximum flow that can be canceled on the cycle and the
// min index such that arc_stack[index_branch[i]] will be saturated.
FlowQuantity max_flow = flow;
int first_saturated_index = index_branch.size();
for (int i = index_branch.size() - 1; i >= cycle_begin; --i) {
const ArcIndex arc_on_cycle = arc_stack[index_branch[i]];
if (Flow(arc_on_cycle) <= max_flow) {
max_flow = Flow(arc_on_cycle);
first_saturated_index = i;
}
}
// This is just here for a DCHECK() below.
const FlowQuantity excess = node_excess_[head];
// Cancel the flow on the cycle, and set visited[node] = false for
// the node that will be backtracked over.
PushFlow(-max_flow, arc);
for (int i = index_branch.size() - 1; i >= cycle_begin; --i) {
const ArcIndex arc_on_cycle = arc_stack[index_branch[i]];
PushFlow(-max_flow, arc_on_cycle);
if (i >= first_saturated_index) {
DCHECK(visited[Head(arc_on_cycle)]);
visited[Head(arc_on_cycle)] = false;
} else {
DCHECK_GT(Flow(arc_on_cycle), 0);
}
}
// This is a simple check that the flow was pushed properly.
DCHECK_EQ(excess, node_excess_[head]);
// Backtrack the dfs just before index_branch[first_saturated_index].
// If the current node is still active, there is nothing to do.
if (first_saturated_index < index_branch.size()) {
arc_stack.resize(index_branch[first_saturated_index]);
index_branch.resize(first_saturated_index);
// We backtracked over the current node, so there is no need to
// continue looping over its arcs.
break;
}
}
}
}
}
DCHECK(arc_stack.empty());
DCHECK(index_branch.empty());
// Return the flow to the sink. Note that the sink_ and the source_ are not
// stored in reverse_topological_order.
for (int i = 0; i < reverse_topological_order.size(); i++) {
const NodeIndex node = reverse_topological_order[i];
if (node_excess_[node] == 0) continue;
for (IncomingArcIterator it(*graph_, node); it.Ok(); it.Next()) {
const ArcIndex opposite_arc = Opposite(it.Index());
if (residual_arc_capacity_[opposite_arc] > 0) {
const FlowQuantity flow =
std::min(node_excess_[node], residual_arc_capacity_[opposite_arc]);
PushFlow(flow, opposite_arc);
if (node_excess_[node] == 0) break;
}
}
DCHECK_EQ(0, node_excess_[node]);
}
DCHECK_EQ(-node_excess_[source_], node_excess_[sink_]);
}
template <typename Graph>
void GenericMaxFlow<Graph>::GlobalUpdate() {
SCOPED_TIME_STAT(&stats_);
bfs_queue_.clear();
int queue_index = 0;
const NodeIndex num_nodes = graph_->num_nodes();
node_in_bfs_queue_.assign(num_nodes, false);
node_in_bfs_queue_[sink_] = true;
node_in_bfs_queue_[source_] = true;
// We do two BFS in the reverse residual graph, one from the sink and one from
// the source. Because all the arcs from the source are saturated (except in
// presence of integer overflow), the source cannot reach the sink in the
// residual graph. However, we still want to relabel all the nodes that cannot
// reach the sink but can reach the source (because if they have excess, we
// need to push it back to the source).
//
// Note that the second pass is not needed here if we use a two-pass algorithm
// to return the flow to the source after we found the min cut.
const int num_passes = use_two_phase_algorithm_ ? 1 : 2;
for (int pass = 0; pass < num_passes; ++pass) {
if (pass == 0) {
bfs_queue_.push_back(sink_);
} else {
bfs_queue_.push_back(source_);
}
while (queue_index != bfs_queue_.size()) {
const NodeIndex node = bfs_queue_[queue_index];
++queue_index;
const NodeIndex candidate_distance = node_potential_[node] + 1;
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node); it.Ok();
it.Next()) {
const ArcIndex arc = it.Index();
const NodeIndex head = Head(arc);
// Skip the arc if the height of head was already set to the correct
// value (Remember we are doing reverse BFS).
if (node_in_bfs_queue_[head]) continue;
// TODO(user): By using more memory we can speed this up quite a bit by
// avoiding to take the opposite arc here, too options:
// - if (residual_arc_capacity_[arc] != arc_capacity_[arc])
// - if (opposite_arc_is_admissible_[arc]) // need updates.
// Experiment with the first option shows more than 10% gain on this
// function running time, which is the bottleneck on many instances.
const ArcIndex opposite_arc = Opposite(arc);
if (residual_arc_capacity_[opposite_arc] > 0) {
// Note(user): We used to have a DCHECK_GE(candidate_distance,
// node_potential_[head]); which is always true except in the case
// where we can push more than kMaxFlowQuantity out of the source. The
// problem comes from the fact that in this case, we call
// PushFlowExcessBackToSource() in the middle of the algorithm. The
// later call will break the properties of the node potential. Note
// however, that this function will recompute a good node potential
// for all the nodes and thus fix the issue.
// If head is active, we can steal some or all of its excess.
// This brings a huge gain on some problems.
// Note(user): I haven't seen this anywhere in the literature.
// TODO(user): Investigate more and maybe write a publication :)
if (node_excess_[head] > 0) {
const FlowQuantity flow = std::min(
node_excess_[head], residual_arc_capacity_[opposite_arc]);
PushFlow(flow, opposite_arc);
// If the arc became saturated, it is no longer in the residual
// graph, so we do not need to consider head at this time.
if (residual_arc_capacity_[opposite_arc] == 0) continue;
}
// Note that there is no need to touch first_admissible_arc_[node]
// because of the relaxed Relabel() we use.
node_potential_[head] = candidate_distance;
node_in_bfs_queue_[head] = true;
bfs_queue_.push_back(head);
}
}
}
}
// At the end of the search, some nodes may not be in the bfs_queue_. Such
// nodes cannot reach the sink_ or source_ in the residual graph, so there is
// no point trying to push flow toward them. We obtain this effect by setting
// their height to something unreachable.
//
// Note that this also prevents cycling due to our anti-overflow procedure.
// For instance, suppose there is an edge s -> n outgoing from the source. If
// node n has no other connection and some excess, we will push the flow back
// to the source, but if we don't update the height of n
// SaturateOutgoingArcsFromSource() will push the flow to n again.
// TODO(user): This is another argument for another anti-overflow algorithm.
for (NodeIndex node = 0; node < num_nodes; ++node) {
if (!node_in_bfs_queue_[node]) {
node_potential_[node] = 2 * num_nodes - 1;
}
}
// Reset the active nodes. Doing it like this pushes the nodes in increasing
// order of height. Note that bfs_queue_[0] is the sink_ so we skip it.
DCHECK(IsEmptyActiveNodeContainer());
for (int i = 1; i < bfs_queue_.size(); ++i) {
const NodeIndex node = bfs_queue_[i];
if (node_excess_[node] > 0) {
DCHECK(IsActive(node));
PushActiveNode(node);
}
}
}
template <typename Graph>
bool GenericMaxFlow<Graph>::SaturateOutgoingArcsFromSource() {
SCOPED_TIME_STAT(&stats_);
const NodeIndex num_nodes = graph_->num_nodes();
// If sink_ or source_ already have kMaxFlowQuantity, then there is no
// point pushing more flow since it will cause an integer overflow.
if (node_excess_[sink_] == kMaxFlowQuantity) return false;
if (node_excess_[source_] == -kMaxFlowQuantity) return false;
bool flow_pushed = false;
for (OutgoingArcIterator it(*graph_, source_); it.Ok(); it.Next()) {
const ArcIndex arc = it.Index();
const FlowQuantity flow = residual_arc_capacity_[arc];
// This is a special IsAdmissible() condition for the source.
if (flow == 0 || node_potential_[Head(arc)] >= num_nodes) continue;
// We are careful in case the sum of the flow out of the source is greater
// than kMaxFlowQuantity to avoid overflow.
const FlowQuantity current_flow_out_of_source = -node_excess_[source_];
DCHECK_GE(flow, 0) << flow;
DCHECK_GE(current_flow_out_of_source, 0) << current_flow_out_of_source;
const FlowQuantity capped_flow =
kMaxFlowQuantity - current_flow_out_of_source;
if (capped_flow < flow) {
// We push as much flow as we can so the current flow on the network will
// be kMaxFlowQuantity.
// Since at the beginning of the function, current_flow_out_of_source
// was different from kMaxFlowQuantity, we are sure to have pushed some
// flow before if capped_flow is 0.
if (capped_flow == 0) return true;
PushFlow(capped_flow, arc);
return true;
}
PushFlow(flow, arc);
flow_pushed = true;
}
DCHECK_LE(node_excess_[source_], 0);
return flow_pushed;
}
template <typename Graph>
void GenericMaxFlow<Graph>::PushFlow(FlowQuantity flow, ArcIndex arc) {
SCOPED_TIME_STAT(&stats_);
// TODO(user): Do not allow a zero flow after fixing the UniformMaxFlow code.
DCHECK_GE(residual_arc_capacity_[Opposite(arc)] + flow, 0);
DCHECK_GE(residual_arc_capacity_[arc] - flow, 0);
// node_excess_ should be always greater than or equal to 0 except for the
// source where it should always be smaller than or equal to 0. Note however
// that we cannot check this because when we cancel the flow on a cycle in
// PushFlowExcessBackToSource(), we may break this invariant during the
// operation even if it is still valid at the end.
// Update the residual capacity of the arc and its opposite arc.
residual_arc_capacity_[arc] -= flow;
residual_arc_capacity_[Opposite(arc)] += flow;
// Update the excesses at the tail and head of the arc.
node_excess_[Tail(arc)] -= flow;
node_excess_[Head(arc)] += flow;
}
template <typename Graph>
void GenericMaxFlow<Graph>::InitializeActiveNodeContainer() {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsEmptyActiveNodeContainer());
const NodeIndex num_nodes = graph_->num_nodes();
for (NodeIndex node = 0; node < num_nodes; ++node) {
if (IsActive(node)) {
if (use_two_phase_algorithm_ && node_potential_[node] >= num_nodes) {
continue;
}
PushActiveNode(node);
}
}
}
template <typename Graph>
void GenericMaxFlow<Graph>::Refine() {
SCOPED_TIME_STAT(&stats_);
// Usually SaturateOutgoingArcsFromSource() will saturate all the arcs from
// the source in one go, and we will loop just once. But in case we can push
// more than kMaxFlowQuantity out of the source the loop is as follow:
// - Push up to kMaxFlowQuantity out of the source on the admissible outgoing
// arcs. Stop if no flow was pushed.
// - Compute the current max-flow. This will push some flow back to the
// source and render more outgoing arcs from the source not admissible.
//
// TODO(user): This may not be the most efficient algorithm if we need to loop
// many times. An alternative may be to handle the source like the other nodes
// in the algorithm, initially putting an excess of kMaxFlowQuantity on it,
// and making the source active like any other node with positive excess. To
// investigate.
//
// TODO(user): The code below is buggy when more than kMaxFlowQuantity can be
// pushed out of the source (i.e. when we loop more than once in the while()).
// This is not critical, since this code is not used in the default algorithm
// computation. The issue is twofold:
// - InitializeActiveNodeContainer() doesn't push the nodes in
// the correct order.
// - PushFlowExcessBackToSource() may break the node potential properties, and
// we will need a call to GlobalUpdate() to fix that.
while (SaturateOutgoingArcsFromSource()) {
DCHECK(IsEmptyActiveNodeContainer());
InitializeActiveNodeContainer();
while (!IsEmptyActiveNodeContainer()) {
const NodeIndex node = GetAndRemoveFirstActiveNode();
if (node == source_ || node == sink_) continue;
Discharge(node);
}
if (use_two_phase_algorithm_) {
PushFlowExcessBackToSource();
}
}
}
template <typename Graph>
void GenericMaxFlow<Graph>::RefineWithGlobalUpdate() {
SCOPED_TIME_STAT(&stats_);
// TODO(user): This should be graph_->num_nodes(), but ebert graph does not
// have a correct size if the highest index nodes have no arcs.
const NodeIndex num_nodes = Graphs<Graph>::NodeReservation(*graph_);
std::vector<int> skip_active_node;
while (SaturateOutgoingArcsFromSource()) {
int num_skipped;
do {
num_skipped = 0;
skip_active_node.assign(num_nodes, 0);
skip_active_node[sink_] = 2;
skip_active_node[source_] = 2;
GlobalUpdate();
while (!IsEmptyActiveNodeContainer()) {
const NodeIndex node = GetAndRemoveFirstActiveNode();
if (skip_active_node[node] > 1) {
if (node != sink_ && node != source_) ++num_skipped;
continue;
}
const NodeIndex old_height = node_potential_[node];
Discharge(node);
// The idea behind this is that if a node height augments by more than
// one, then it is likely to push flow back the way it came. This can
// lead to very costly loops. A bad case is: source -> n1 -> n2 and n2
// just recently isolated from the sink. Then n2 will push flow back to
// n1, and n1 to n2 and so on. The height of each node will increase by
// steps of two until the height of the source is reached, which can
// take a long time. If the chain is longer, the situation is even
// worse. The behavior of this heuristic is related to the Gap
// heuristic.
//
// Note that the global update will fix all such cases efficiently. So
// the idea is to discharge the active node as much as possible, and
// then do a global update.
//
// We skip a node when this condition was true 2 times to avoid doing a
// global update too frequently.
if (node_potential_[node] > old_height + 1) {
++skip_active_node[node];
}
}
} while (num_skipped > 0);
if (use_two_phase_algorithm_) {
PushFlowExcessBackToSource();
}
}
}
template <typename Graph>
void GenericMaxFlow<Graph>::Discharge(NodeIndex node) {
SCOPED_TIME_STAT(&stats_);
const NodeIndex num_nodes = graph_->num_nodes();
while (true) {
DCHECK(IsActive(node));
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node,
first_admissible_arc_[node]);
it.Ok(); it.Next()) {
const ArcIndex arc = it.Index();
if (IsAdmissible(arc)) {
DCHECK(IsActive(node));
const NodeIndex head = Head(arc);
if (node_excess_[head] == 0) {
// The push below will make the node active for sure. Note that we may
// push the sink_, but that is handled properly in Refine().
PushActiveNode(head);
}
const FlowQuantity delta =
std::min(node_excess_[node], residual_arc_capacity_[arc]);
PushFlow(delta, arc);
if (node_excess_[node] == 0) {
first_admissible_arc_[node] = arc; // arc may still be admissible.
return;
}
}
}
Relabel(node);
if (use_two_phase_algorithm_ && node_potential_[node] >= num_nodes) break;
}
}
template <typename Graph>
void GenericMaxFlow<Graph>::Relabel(NodeIndex node) {
SCOPED_TIME_STAT(&stats_);
// Because we use a relaxed version, this is no longer true if the
// first_admissible_arc_[node] was not actually the first arc!
// DCHECK(CheckRelabelPrecondition(node));
NodeHeight min_height = std::numeric_limits<NodeHeight>::max();
ArcIndex first_admissible_arc = Graph::kNilArc;
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node); it.Ok();
it.Next()) {
const ArcIndex arc = it.Index();
if (residual_arc_capacity_[arc] > 0) {
// Update min_height only for arcs with available capacity.
NodeHeight head_height = node_potential_[Head(arc)];
if (head_height < min_height) {
min_height = head_height;
first_admissible_arc = arc;
// We found an admissible arc at the current height, just stop there.
// This is the true first_admissible_arc_[node].
if (min_height + 1 == node_potential_[node]) break;
}
}
}
DCHECK_NE(first_admissible_arc, Graph::kNilArc);
node_potential_[node] = min_height + 1;
// Note that after a Relabel(), the loop will continue in Discharge(), and
// we are sure that all the arcs before first_admissible_arc are not
// admissible since their height is > min_height.
first_admissible_arc_[node] = first_admissible_arc;
}
template <typename Graph>
typename Graph::ArcIndex GenericMaxFlow<Graph>::Opposite(ArcIndex arc) const {
return Graphs<Graph>::OppositeArc(*graph_, arc);
}
template <typename Graph>
bool GenericMaxFlow<Graph>::IsArcDirect(ArcIndex arc) const {
return IsArcValid(arc) && arc >= 0;
}
template <typename Graph>
bool GenericMaxFlow<Graph>::IsArcValid(ArcIndex arc) const {
return Graphs<Graph>::IsArcValid(*graph_, arc);
}
template <typename Graph>
const FlowQuantity GenericMaxFlow<Graph>::kMaxFlowQuantity =
std::numeric_limits<FlowQuantity>::max();
template <typename Graph>
template <bool reverse>
void GenericMaxFlow<Graph>::ComputeReachableNodes(
NodeIndex start, std::vector<NodeIndex>* result) {
// If start is not a valid node index, it can reach only itself.
// Note(user): This is needed because source and sink are given independently
// of the graph and sometimes before it is even constructed.
const NodeIndex num_nodes = graph_->num_nodes();
if (start >= num_nodes) {
result->clear();
result->push_back(start);
return;
}
bfs_queue_.clear();
node_in_bfs_queue_.assign(num_nodes, false);
int queue_index = 0;
bfs_queue_.push_back(start);
node_in_bfs_queue_[start] = true;
while (queue_index != bfs_queue_.size()) {
const NodeIndex node = bfs_queue_[queue_index];
++queue_index;
for (OutgoingOrOppositeIncomingArcIterator it(*graph_, node); it.Ok();
it.Next()) {
const ArcIndex arc = it.Index();
const NodeIndex head = Head(arc);
if (node_in_bfs_queue_[head]) continue;
if (residual_arc_capacity_[reverse ? Opposite(arc) : arc] == 0) continue;
node_in_bfs_queue_[head] = true;
bfs_queue_.push_back(head);
}
}
*result = bfs_queue_;
}
template <typename Graph>
FlowModelProto GenericMaxFlow<Graph>::CreateFlowModel() {
FlowModelProto model;
model.set_problem_type(FlowModelProto::MAX_FLOW);
for (int n = 0; n < graph_->num_nodes(); ++n) {
FlowNodeProto* node = model.add_nodes();
node->set_id(n);
if (n == source_) node->set_supply(1);
if (n == sink_) node->set_supply(-1);
}
for (int a = 0; a < graph_->num_arcs(); ++a) {
FlowArcProto* arc = model.add_arcs();
arc->set_tail(graph_->Tail(a));
arc->set_head(graph_->Head(a));
arc->set_capacity(Capacity(a));
}
return model;