-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathtermination.cc
273 lines (252 loc) · 11.4 KB
/
termination.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/pdlp/termination.h"
#include <atomic>
#include <cmath>
#include <optional>
#include "ortools/base/logging.h"
#include "ortools/pdlp/solve_log.pb.h"
#include "ortools/pdlp/solvers.pb.h"
namespace operations_research::pdlp {
bool ObjectiveGapMet(
const TerminationCriteria::DetailedOptimalityCriteria& optimality_criteria,
const ConvergenceInformation& stats) {
if (std::isinf(optimality_criteria.eps_optimal_objective_gap_absolute()) ||
std::isinf(optimality_criteria.eps_optimal_objective_gap_relative())) {
return true;
}
const double abs_obj =
std::abs(stats.primal_objective()) + std::abs(stats.dual_objective());
const double gap =
std::abs(stats.primal_objective() - stats.dual_objective());
return std::isfinite(abs_obj) &&
gap <= optimality_criteria.eps_optimal_objective_gap_absolute() +
optimality_criteria.eps_optimal_objective_gap_relative() *
abs_obj;
}
bool OptimalityCriteriaMet(
const TerminationCriteria::DetailedOptimalityCriteria& optimality_criteria,
const ConvergenceInformation& stats, const OptimalityNorm optimality_norm,
const QuadraticProgramBoundNorms& bound_norms) {
double primal_err;
double primal_err_baseline;
double dual_err;
double dual_err_baseline;
double primal_absolute_epsilon =
optimality_criteria.eps_optimal_primal_residual_absolute();
double dual_absolute_epsilon =
optimality_criteria.eps_optimal_dual_residual_absolute();
switch (optimality_norm) {
case OPTIMALITY_NORM_L_INF:
primal_err = stats.l_inf_primal_residual();
primal_err_baseline = bound_norms.l_inf_norm_constraint_bounds;
dual_err = stats.l_inf_dual_residual();
dual_err_baseline = bound_norms.l_inf_norm_primal_linear_objective;
break;
case OPTIMALITY_NORM_L2:
primal_err = stats.l2_primal_residual();
primal_err_baseline = bound_norms.l2_norm_constraint_bounds;
dual_err = stats.l2_dual_residual();
dual_err_baseline = bound_norms.l2_norm_primal_linear_objective;
break;
case OPTIMALITY_NORM_L_INF_COMPONENTWISE:
primal_err = stats.l_inf_componentwise_primal_residual();
primal_err_baseline = 1.0;
primal_absolute_epsilon = 0.0;
dual_err = stats.l_inf_componentwise_dual_residual();
dual_err_baseline = 1.0;
dual_absolute_epsilon = 0.0;
break;
default:
LOG(FATAL) << "Invalid optimality_norm value "
<< OptimalityNorm_Name(optimality_norm);
}
const bool primal_err_ok =
std::isinf(optimality_criteria.eps_optimal_primal_residual_absolute()) ||
std::isinf(optimality_criteria.eps_optimal_primal_residual_relative()) ||
primal_err <=
primal_absolute_epsilon +
optimality_criteria.eps_optimal_primal_residual_relative() *
primal_err_baseline;
const bool dual_err_ok =
std::isinf(optimality_criteria.eps_optimal_dual_residual_absolute()) ||
std::isinf(optimality_criteria.eps_optimal_dual_residual_relative()) ||
dual_err <= dual_absolute_epsilon +
optimality_criteria.eps_optimal_dual_residual_relative() *
dual_err_baseline;
return primal_err_ok && dual_err_ok &&
ObjectiveGapMet(optimality_criteria, stats);
}
namespace {
// Checks if the criteria for primal infeasibility are approximately
// satisfied; see https://developers.google.com/optimization/lp/pdlp_math for
// more details.
bool PrimalInfeasibilityCriteriaMet(double eps_primal_infeasible,
const InfeasibilityInformation& stats) {
if (stats.dual_ray_objective() <= 0.0) return false;
return stats.max_dual_ray_infeasibility() / stats.dual_ray_objective() <=
eps_primal_infeasible;
}
// Checks if the criteria for dual infeasibility are approximately satisfied;
// see https://developers.google.com/optimization/lp/pdlp_math for more details.
bool DualInfeasibilityCriteriaMet(double eps_dual_infeasible,
const InfeasibilityInformation& stats) {
if (stats.primal_ray_linear_objective() >= 0.0) return false;
return (stats.max_primal_ray_infeasibility() /
-stats.primal_ray_linear_objective() <=
eps_dual_infeasible) &&
(stats.primal_ray_quadratic_norm() /
-stats.primal_ray_linear_objective() <=
eps_dual_infeasible);
}
} // namespace
TerminationCriteria::DetailedOptimalityCriteria EffectiveOptimalityCriteria(
const TerminationCriteria& termination_criteria) {
if (termination_criteria.has_detailed_optimality_criteria()) {
return termination_criteria.detailed_optimality_criteria();
}
TerminationCriteria::SimpleOptimalityCriteria simple_criteria;
if (termination_criteria.has_simple_optimality_criteria()) {
simple_criteria = termination_criteria.simple_optimality_criteria();
} else {
simple_criteria.set_eps_optimal_absolute(
termination_criteria.eps_optimal_absolute());
simple_criteria.set_eps_optimal_relative(
termination_criteria.eps_optimal_relative());
}
return EffectiveOptimalityCriteria(simple_criteria);
}
TerminationCriteria::DetailedOptimalityCriteria EffectiveOptimalityCriteria(
const TerminationCriteria::SimpleOptimalityCriteria& simple_criteria) {
TerminationCriteria::DetailedOptimalityCriteria result;
result.set_eps_optimal_primal_residual_absolute(
simple_criteria.eps_optimal_absolute());
result.set_eps_optimal_primal_residual_relative(
simple_criteria.eps_optimal_relative());
result.set_eps_optimal_dual_residual_absolute(
simple_criteria.eps_optimal_absolute());
result.set_eps_optimal_dual_residual_relative(
simple_criteria.eps_optimal_relative());
result.set_eps_optimal_objective_gap_absolute(
simple_criteria.eps_optimal_absolute());
result.set_eps_optimal_objective_gap_relative(
simple_criteria.eps_optimal_relative());
return result;
}
std::optional<TerminationReasonAndPointType> CheckSimpleTerminationCriteria(
const TerminationCriteria& criteria, const IterationStats& stats,
const std::atomic<bool>* interrupt_solve) {
if (stats.iteration_number() >= criteria.iteration_limit()) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_ITERATION_LIMIT, .type = POINT_TYPE_NONE};
}
if (stats.cumulative_kkt_matrix_passes() >=
criteria.kkt_matrix_pass_limit()) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_KKT_MATRIX_PASS_LIMIT,
.type = POINT_TYPE_NONE};
}
if (stats.cumulative_time_sec() >= criteria.time_sec_limit()) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_TIME_LIMIT, .type = POINT_TYPE_NONE};
}
if (interrupt_solve != nullptr && interrupt_solve->load() == true) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_INTERRUPTED_BY_USER,
.type = POINT_TYPE_NONE};
}
return std::nullopt;
}
std::optional<TerminationReasonAndPointType> CheckIterateTerminationCriteria(
const TerminationCriteria& criteria, const IterationStats& stats,
const QuadraticProgramBoundNorms& bound_norms,
const bool force_numerical_termination) {
TerminationCriteria::DetailedOptimalityCriteria optimality_criteria =
EffectiveOptimalityCriteria(criteria);
for (const auto& convergence_stats : stats.convergence_information()) {
if (OptimalityCriteriaMet(optimality_criteria, convergence_stats,
criteria.optimality_norm(), bound_norms)) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_OPTIMAL,
.type = convergence_stats.candidate_type()};
}
}
for (const auto& infeasibility_stats : stats.infeasibility_information()) {
if (PrimalInfeasibilityCriteriaMet(criteria.eps_primal_infeasible(),
infeasibility_stats)) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_PRIMAL_INFEASIBLE,
.type = infeasibility_stats.candidate_type()};
}
if (DualInfeasibilityCriteriaMet(criteria.eps_dual_infeasible(),
infeasibility_stats)) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_DUAL_INFEASIBLE,
.type = infeasibility_stats.candidate_type()};
}
}
if (force_numerical_termination) {
return TerminationReasonAndPointType{
.reason = TERMINATION_REASON_NUMERICAL_ERROR, .type = POINT_TYPE_NONE};
}
return std::nullopt;
}
QuadraticProgramBoundNorms BoundNormsFromProblemStats(
const QuadraticProgramStats& stats) {
return {
.l2_norm_primal_linear_objective = stats.objective_vector_l2_norm(),
.l2_norm_constraint_bounds = stats.combined_bounds_l2_norm(),
.l_inf_norm_primal_linear_objective = stats.objective_vector_abs_max(),
.l_inf_norm_constraint_bounds = stats.combined_bounds_max()};
}
double EpsilonRatio(const double epsilon_absolute,
const double epsilon_relative) {
// Handling `epsilon_absolute == epsilon_relative` explicitly avoids NANs when
// both values are zero or infinite.
return (epsilon_absolute == epsilon_relative)
? 1.0
: epsilon_absolute / epsilon_relative;
}
RelativeConvergenceInformation ComputeRelativeResiduals(
const TerminationCriteria::DetailedOptimalityCriteria& optimality_criteria,
const ConvergenceInformation& stats,
const QuadraticProgramBoundNorms& bound_norms) {
const double eps_ratio_primal =
EpsilonRatio(optimality_criteria.eps_optimal_primal_residual_absolute(),
optimality_criteria.eps_optimal_primal_residual_relative());
const double eps_ratio_dual =
EpsilonRatio(optimality_criteria.eps_optimal_dual_residual_absolute(),
optimality_criteria.eps_optimal_dual_residual_relative());
const double eps_ratio_gap =
EpsilonRatio(optimality_criteria.eps_optimal_objective_gap_absolute(),
optimality_criteria.eps_optimal_objective_gap_relative());
RelativeConvergenceInformation info;
info.relative_l_inf_primal_residual =
stats.l_inf_primal_residual() /
(eps_ratio_primal + bound_norms.l_inf_norm_constraint_bounds);
info.relative_l2_primal_residual =
stats.l2_primal_residual() /
(eps_ratio_primal + bound_norms.l2_norm_constraint_bounds);
info.relative_l_inf_dual_residual =
stats.l_inf_dual_residual() /
(eps_ratio_dual + bound_norms.l_inf_norm_primal_linear_objective);
info.relative_l2_dual_residual =
stats.l2_dual_residual() /
(eps_ratio_dual + bound_norms.l2_norm_primal_linear_objective);
const double abs_obj =
std::abs(stats.primal_objective()) + std::abs(stats.dual_objective());
const double gap = stats.primal_objective() - stats.dual_objective();
info.relative_optimality_gap = gap / (eps_ratio_gap + abs_obj);
return info;
}
} // namespace operations_research::pdlp