-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathassignment_groups_sat.py
143 lines (125 loc) · 4.37 KB
/
assignment_groups_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Solves an assignment problem for given group of workers."""
# [START import]
from ortools.sat.python import cp_model
# [END import]
def main() -> None:
# Data
# [START data]
costs = [
[90, 76, 75, 70, 50, 74],
[35, 85, 55, 65, 48, 101],
[125, 95, 90, 105, 59, 120],
[45, 110, 95, 115, 104, 83],
[60, 105, 80, 75, 59, 62],
[45, 65, 110, 95, 47, 31],
[38, 51, 107, 41, 69, 99],
[47, 85, 57, 71, 92, 77],
[39, 63, 97, 49, 118, 56],
[47, 101, 71, 60, 88, 109],
[17, 39, 103, 64, 61, 92],
[101, 45, 83, 59, 92, 27],
]
num_workers = len(costs)
num_tasks = len(costs[0])
# [END data]
# Allowed groups of workers:
# [START allowed_groups]
group1 = [
[0, 0, 1, 1], # Workers 2, 3
[0, 1, 0, 1], # Workers 1, 3
[0, 1, 1, 0], # Workers 1, 2
[1, 1, 0, 0], # Workers 0, 1
[1, 0, 1, 0], # Workers 0, 2
]
group2 = [
[0, 0, 1, 1], # Workers 6, 7
[0, 1, 0, 1], # Workers 5, 7
[0, 1, 1, 0], # Workers 5, 6
[1, 1, 0, 0], # Workers 4, 5
[1, 0, 0, 1], # Workers 4, 7
]
group3 = [
[0, 0, 1, 1], # Workers 10, 11
[0, 1, 0, 1], # Workers 9, 11
[0, 1, 1, 0], # Workers 9, 10
[1, 0, 1, 0], # Workers 8, 10
[1, 0, 0, 1], # Workers 8, 11
]
# [END allowed_groups]
# Model
# [START model]
model = cp_model.CpModel()
# [END model]
# Variables
# [START variables]
x = {}
for worker in range(num_workers):
for task in range(num_tasks):
x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")
# [END variables]
# Constraints
# [START constraints]
# Each worker is assigned to at most one task.
for worker in range(num_workers):
model.add_at_most_one(x[worker, task] for task in range(num_tasks))
# Each task is assigned to exactly one worker.
for task in range(num_tasks):
model.add_exactly_one(x[worker, task] for worker in range(num_workers))
# [END constraints]
# [START assignments]
# Create variables for each worker, indicating whether they work on some task.
work = {}
for worker in range(num_workers):
work[worker] = model.new_bool_var(f"work[{worker}]")
for worker in range(num_workers):
for task in range(num_tasks):
model.add(work[worker] == sum(x[worker, task] for task in range(num_tasks)))
# Define the allowed groups of worders
model.add_allowed_assignments([work[0], work[1], work[2], work[3]], group1)
model.add_allowed_assignments([work[4], work[5], work[6], work[7]], group2)
model.add_allowed_assignments([work[8], work[9], work[10], work[11]], group3)
# [END assignments]
# Objective
# [START objective]
objective_terms = []
for worker in range(num_workers):
for task in range(num_tasks):
objective_terms.append(costs[worker][task] * x[worker, task])
model.minimize(sum(objective_terms))
# [END objective]
# Solve
# [START solve]
solver = cp_model.CpSolver()
status = solver.solve(model)
# [END solve]
# Print solution.
# [START print_solution]
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
print(f"Total cost = {solver.objective_value}\n")
for worker in range(num_workers):
for task in range(num_tasks):
if solver.boolean_value(x[worker, task]):
print(
f"Worker {worker} assigned to task {task}."
+ f" Cost = {costs[worker][task]}"
)
else:
print("No solution found.")
# [END print_solution]
if __name__ == "__main__":
main()
# [END program]