-
-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathdefaultenginefloat64.go
232 lines (201 loc) · 6.22 KB
/
defaultenginefloat64.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
package tensor
import (
"github.com/pkg/errors"
"gorgonia.org/tensor/internal/execution"
"gorgonia.org/tensor/internal/storage"
"gorgonia.org/vecf64"
)
func handleFuncOptsF64(expShape Shape, o DataOrder, opts ...FuncOpt) (reuse DenseTensor, safe, toReuse, incr bool, err error) {
fo := ParseFuncOpts(opts...)
reuseT, incr := fo.IncrReuse()
safe = fo.Safe()
toReuse = reuseT != nil
if toReuse {
var ok bool
if reuse, ok = reuseT.(DenseTensor); !ok {
returnOpOpt(fo)
err = errors.Errorf("Cannot reuse a different type of Tensor in a *Dense-Scalar operation. Reuse is of %T", reuseT)
return
}
if reuse.len() != expShape.TotalSize() && !expShape.IsScalar() {
returnOpOpt(fo)
err = errors.Errorf(shapeMismatch, reuse.Shape(), expShape)
err = errors.Wrapf(err, "Cannot use reuse: shape mismatch")
return
}
if !incr && reuse != nil {
reuse.setDataOrder(o)
// err = reuse.reshape(expShape...)
}
}
returnOpOpt(fo)
return
}
func prepDataVSF64(a Tensor, b interface{}, reuse Tensor) (dataA *storage.Header, dataB float64, dataReuse *storage.Header, ait, iit Iterator, useIter bool, err error) {
// get data
dataA = a.hdr()
switch bt := b.(type) {
case float64:
dataB = bt
case *float64:
dataB = *bt
default:
err = errors.Errorf("b is not a float64: %T", b)
return
}
if reuse != nil {
dataReuse = reuse.hdr()
}
if a.RequiresIterator() || (reuse != nil && reuse.RequiresIterator()) {
ait = a.Iterator()
if reuse != nil {
iit = reuse.Iterator()
}
useIter = true
}
return
}
func (e Float64Engine) checkThree(a, b Tensor, reuse Tensor) error {
if !a.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, a)
}
if !b.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, b)
}
if reuse != nil && !reuse.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, reuse)
}
if a.Dtype() != Float64 {
return errors.Errorf("Expected a to be of Float64. Got %v instead", a.Dtype())
}
if a.Dtype() != b.Dtype() || (reuse != nil && b.Dtype() != reuse.Dtype()) {
return errors.Errorf("Expected a, b and reuse to have the same Dtype. Got %v, %v and %v instead", a.Dtype(), b.Dtype(), reuse.Dtype())
}
return nil
}
func (e Float64Engine) checkTwo(a Tensor, reuse Tensor) error {
if !a.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, a)
}
if reuse != nil && !reuse.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, reuse)
}
if a.Dtype() != Float64 {
return errors.Errorf("Expected a to be of Float64. Got %v instead", a.Dtype())
}
if reuse != nil && reuse.Dtype() != a.Dtype() {
return errors.Errorf("Expected reuse to be the same as a. Got %v instead", reuse.Dtype())
}
return nil
}
// Float64Engine is an execution engine that is optimized to only work with float64s. It assumes all data will are float64s.
//
// Use this engine only as form of optimization. You should probably be using the basic default engine for most cases.
type Float64Engine struct {
StdEng
}
// makeArray allocates a slice for the array
func (e Float64Engine) makeArray(arr *array, t Dtype, size int) {
if t != Float64 {
panic("Float64Engine only creates float64s")
}
arr.Header.Raw = make([]byte, size*8)
arr.t = t
}
func (e Float64Engine) FMA(a, x, y Tensor) (retVal Tensor, err error) {
reuse := y
if err = e.checkThree(a, x, reuse); err != nil {
return nil, errors.Wrap(err, "Failed checks")
}
var dataA, dataB, dataReuse *storage.Header
var ait, bit, iit Iterator
var useIter bool
if dataA, dataB, dataReuse, ait, bit, iit, useIter, _, err = prepDataVV(a, x, reuse); err != nil {
return nil, errors.Wrap(err, "Float64Engine.FMA")
}
if useIter {
err = execution.MulIterIncrF64(dataA.Float64s(), dataB.Float64s(), dataReuse.Float64s(), ait, bit, iit)
retVal = reuse
return
}
vecf64.IncrMul(dataA.Float64s(), dataB.Float64s(), dataReuse.Float64s())
retVal = reuse
return
}
func (e Float64Engine) FMAScalar(a Tensor, x interface{}, y Tensor) (retVal Tensor, err error) {
reuse := y
if err = e.checkTwo(a, reuse); err != nil {
return nil, errors.Wrap(err, "Failed checks")
}
var ait, iit Iterator
var dataTensor, dataReuse *storage.Header
var scalar float64
var useIter bool
if dataTensor, scalar, dataReuse, ait, iit, useIter, err = prepDataVSF64(a, x, reuse); err != nil {
return nil, errors.Wrapf(err, opFail, "Float64Engine.FMAScalar")
}
if useIter {
err = execution.MulIterIncrVSF64(dataTensor.Float64s(), scalar, dataReuse.Float64s(), ait, iit)
retVal = reuse
}
execution.MulIncrVSF64(dataTensor.Float64s(), scalar, dataReuse.Float64s())
retVal = reuse
return
}
// Add performs a + b elementwise. Both a and b must have the same shape.
// Acceptable FuncOpts are: UseUnsafe(), WithReuse(T), WithIncr(T)
func (e Float64Engine) Add(a Tensor, b Tensor, opts ...FuncOpt) (retVal Tensor, err error) {
if a.RequiresIterator() || b.RequiresIterator() {
return e.StdEng.Add(a, b, opts...)
}
var reuse DenseTensor
var safe, toReuse, incr bool
if reuse, safe, toReuse, incr, err = handleFuncOptsF64(a.Shape(), a.DataOrder(), opts...); err != nil {
return nil, errors.Wrap(err, "Unable to handle funcOpts")
}
if err = e.checkThree(a, b, reuse); err != nil {
return nil, errors.Wrap(err, "Failed checks")
}
var hdrA, hdrB, hdrReuse *storage.Header
var dataA, dataB, dataReuse []float64
if hdrA, hdrB, hdrReuse, _, _, _, _, _, err = prepDataVV(a, b, reuse); err != nil {
return nil, errors.Wrapf(err, "Float64Engine.Add")
}
dataA = hdrA.Float64s()
dataB = hdrB.Float64s()
if hdrReuse != nil {
dataReuse = hdrReuse.Float64s()
}
switch {
case incr:
vecf64.IncrAdd(dataA, dataB, dataReuse)
retVal = reuse
case toReuse:
copy(dataReuse, dataA)
vecf64.Add(dataReuse, dataB)
retVal = reuse
case !safe:
vecf64.Add(dataA, dataB)
retVal = a
default:
ret := a.Clone().(headerer)
vecf64.Add(ret.hdr().Float64s(), dataB)
retVal = ret.(Tensor)
}
return
}
func (e Float64Engine) Inner(a, b Tensor) (retVal float64, err error) {
var A, B []float64
var AD, BD *Dense
var ok bool
if AD, ok = a.(*Dense); !ok {
return 0, errors.Errorf("a is not a *Dense")
}
if BD, ok = b.(*Dense); !ok {
return 0, errors.Errorf("b is not a *Dense")
}
A = AD.Float64s()
B = BD.Float64s()
retVal = whichblas.Ddot(len(A), A, 1, B, 1)
return
}