-
-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathdense_svd_test.go
225 lines (190 loc) · 5.8 KB
/
dense_svd_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package tensor
import (
"fmt"
"testing"
"github.com/pkg/errors"
"gonum.org/v1/gonum/mat"
)
// tests for SVD adapted from Gonum's SVD tests.
// Gonum's licence is listed at https://gonum.org/v1/gonum/license
var svdtestsThin = []struct {
data []float64
shape Shape
correctSData []float64
correctSShape Shape
correctUData []float64
correctUShape Shape
correctVData []float64
correctVShape Shape
}{
{
[]float64{2, 4, 1, 3, 0, 0, 0, 0}, Shape{4, 2},
[]float64{5.464985704219041, 0.365966190626258}, Shape{2},
[]float64{-0.8174155604703632, -0.5760484367663209, -0.5760484367663209, 0.8174155604703633, 0, 0, 0, 0}, Shape{4, 2},
[]float64{-0.4045535848337571, -0.9145142956773044, -0.9145142956773044, 0.4045535848337571}, Shape{2, 2},
},
{
[]float64{1, 1, 0, 1, 0, 0, 0, 0, 0, 11, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 12, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 13, 3}, Shape{3, 11},
[]float64{21.259500881097434, 1.5415021616856566, 1.2873979074613628}, Shape{3},
[]float64{-0.5224167862273765, 0.7864430360363114, 0.3295270133658976, -0.5739526766688285, -0.03852203026050301, -0.8179818935216693, -0.6306021141833781, -0.6164603833618163, 0.4715056408282468}, Shape{3, 3},
[]float64{
-0.08123293141915189, 0.08528085505260324, -0.013165501690885152,
-0.05423546426886932, 0.1102707844980355, 0.622210623111631,
0, 0, 0,
-0.0245733326078166, 0.510179651760153, 0.25596360803140994,
0, 0, 0,
0, 0, 0,
-0.026997467150282436, -0.024989929445430496, -0.6353761248025164,
0, 0, 0,
-0.029662131661052707, -0.3999088672621176, 0.3662470150802212,
-0.9798839760830571, 0.11328174160898856, -0.047702613241813366,
-0.16755466189153964, -0.7395268089170608, 0.08395240366704032}, Shape{11, 3},
},
}
var svdtestsFull = []Shape{
{5, 5},
{5, 3},
{3, 5},
{150, 150},
{200, 150},
{150, 200},
}
// calculate corrects
func calcSigma(s, T *Dense, shape Shape) (sigma *Dense, err error) {
sigma = New(Of(Float64), WithShape(shape...))
for i := 0; i < MinInt(shape[0], shape[1]); i++ {
var idx int
if idx, err = Ltoi(sigma.Shape(), sigma.Strides(), i, i); err != nil {
return
}
sigma.Float64s()[idx] = s.Float64s()[i]
}
return
}
// test svd by doing the SVD, then calculating the corrects
func testSVD(T, T2, s, u, v *Dense, t string, i int) (err error) {
var sigma, reconstructed *Dense
if !allClose(T2.Data(), T.Data(), closeenoughf64) {
return errors.Errorf("A call to SVD modified the underlying data! %s Test %d", t, i)
}
shape := T2.Shape()
if t == "thin" {
shape = Shape{MinInt(shape[0], shape[1]), MinInt(shape[0], shape[1])}
}
if sigma, err = calcSigma(s, T, shape); err != nil {
return
}
v.T()
if reconstructed, err = u.MatMul(sigma, UseSafe()); err != nil {
return
}
if reconstructed, err = reconstructed.MatMul(v, UseSafe()); err != nil {
return
}
if !allClose(T2.Data(), reconstructed.Data(), closeenoughf64) {
return errors.Errorf("Expected reconstructed to be %v. Got %v instead", T2.Data(), reconstructed.Data())
}
return nil
}
func ExampleDense_SVD() {
T := New(
WithShape(4, 5),
WithBacking([]float64{1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0}),
)
_, u, _, _ := T.SVD(true, true)
uT := u.Clone().(*Dense)
uT.T()
eye, err := u.MatMul(uT)
fmt.Println(eye)
fmt.Println(err)
// Output:
// ⎡1 0 0 0⎤
// ⎢0 1 0 0⎥
// ⎢0 0 1 0⎥
// ⎣0 0 0 1⎦
//
// <nil>
}
func TestDense_SVD(t *testing.T) {
var T, T2, s, u, v *Dense
var err error
// gonum specific thin special cases
for i, stts := range svdtestsThin {
T = New(WithShape(stts.shape...), WithBacking(stts.data))
T2 = T.Clone().(*Dense)
if s, u, v, err = T.SVD(true, false); err != nil {
t.Error(err)
continue
}
if !allClose(T2.Data(), T.Data(), closeenoughf64) {
t.Errorf("A call to SVD modified the underlying data! Thin Test %d", i)
continue
}
if !allClose(stts.correctSData, s.Data(), closeenoughf64) {
t.Errorf("Expected s = %v. Got %v instead", stts.correctSData, s.Data())
}
if !allClose(stts.correctUData, u.Data(), closeenoughf64) {
t.Errorf("Expected u = %v. Got %v instead", stts.correctUData, u.Data())
}
if !allClose(stts.correctVData, v.Data(), closeenoughf64) {
t.Errorf("Expected v = %v. Got %v instead", stts.correctVData, v.Data())
}
}
// standard tests
for i, stfs := range svdtestsFull {
T = New(WithShape(stfs...), WithBacking(Random(Float64, stfs.TotalSize())))
T2 = T.Clone().(*Dense)
// full
if s, u, v, err = T.SVD(true, true); err != nil {
t.Error(err)
fmt.Println(err)
continue
}
if err = testSVD(T, T2, s, u, v, "full", i); err != nil {
t.Error(err)
fmt.Println(err)
continue
}
// thin
if s, u, v, err = T.SVD(true, false); err != nil {
t.Error(err)
continue
}
if err = testSVD(T, T2, s, u, v, "thin", i); err != nil {
t.Error(err)
continue
}
// none
if s, u, v, err = T.SVD(false, false); err != nil {
t.Error(err)
continue
}
var svd mat.SVD
var m *mat.Dense
if m, err = ToMat64(T); err != nil {
t.Error(err)
continue
}
if !svd.Factorize(m, mat.SVDFull) {
t.Errorf("Unable to factorise %v", m)
continue
}
if !allClose(s.Data(), svd.Values(nil), closeenoughf64) {
t.Errorf("Singular value mismatch between Full and None decomposition. Expected %v. Got %v instead", svd.Values(nil), s.Data())
}
}
// this is illogical
T = New(Of(Float64), WithShape(2, 2))
if _, _, _, err = T.SVD(false, true); err == nil {
t.Errorf("Expected an error!")
}
// if you do this, it is bad and you should feel bad
T = New(Of(Float64), WithShape(2, 3, 4))
if _, _, _, err = T.SVD(true, true); err == nil {
t.Errorf("Expecetd an error: cannot SVD() a Tensor > 2 dimensions")
}
T = New(Of(Float64), WithShape(2))
if _, _, _, err = T.SVD(true, true); err == nil {
t.Errorf("Expecetd an error: cannot SVD() a Tensor < 2 dimensions")
}
}