-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathrun_training.py
325 lines (262 loc) · 14.3 KB
/
run_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
import math
import os
import tempfile
import tensorflow as tf
from absl import app, flags, logging
from ogb.graphproppred import Evaluator
import wandb
import utils
import xpu
from data_utils.data_generators import PackedBatchGenerator
from model import create_model
from data_utils.generated_graph_data import GeneratedGraphData
from utils import ThroughputCallback, get_optimizer, str_dtype_to_tf_dtype
flags.DEFINE_integer(
"micro_batch_size", 8, 'Compute batch size (if using packing this is measured in "packs per batch")'
)
flags.DEFINE_integer(
"global_batch_size", None, "Global batch size (Includes batches across gradient accumulation factor and replicas)"
)
flags.DEFINE_integer("n_nodes_per_pack", 248, 'nodes per "pack"')
flags.DEFINE_integer("n_edges_per_pack", 512, 'edges per "pack"')
flags.DEFINE_integer("n_graphs_per_pack", 16, 'maximum number of graphs per "pack"')
flags.DEFINE_integer("epochs", 100, "maximum number of epochs to run for")
flags.DEFINE_float("lr", 2e-5, "learning rate")
flags.DEFINE_boolean("cosine_lr", False, "use a cosine lr decay")
flags.DEFINE_float("min_lr", 0, "minimum learning rate for the cosine scheduler")
flags.DEFINE_float("loss_scaling", 16, "loss scaling factor (to keep gradients representable in IEEE FP16)")
flags.DEFINE_enum("adam_m_dtype", "float16", ("float16", "float32"), "dtype for the m part of the adam optimizer")
flags.DEFINE_enum("adam_v_dtype", "float32", ("float16", "float32"), "dtype for the v part of the adam optimizer")
flags.DEFINE_enum("dataset_name", "ogbg-molhiv", ("ogbg-molhiv",), help="which dataset to use")
flags.DEFINE_boolean("generated_data", False, "Use randomly generated data instead of a real dataset.")
flags.DEFINE_integer("generated_data_n_nodes", 24, "nodes per graph for the randomly generated dataset")
flags.DEFINE_integer("generated_data_n_edges", 50, "edges per graph for the randomly generated dataset")
flags.DEFINE_integer(
"generated_batches_per_epoch", 2048, "Number of batches per epoch for the randomly generated dataset"
)
flags.DEFINE_boolean("do_training", True, "Run training on the dataset")
flags.DEFINE_boolean("do_validation", True, "Run validation on the dataset")
flags.DEFINE_boolean("do_test", True, "Run test on the dataset")
flags.DEFINE_boolean("execution_profile", False, "Create an execution profile in TensorBoard.")
flags.DEFINE_boolean("wandb", default=True, help="Enable logging to Weights & Biases")
flags.DEFINE_string("checkpoint_path", default=None, help="Path to checkpoint file if skipping training.")
flags.DEFINE_integer("checkpoint_every_n_epochs", default=1, help="Create checkpoints every N epochs.")
FLAGS = flags.FLAGS
class ScaledBinaryCrossentropy(tf.keras.losses.BinaryCrossentropy):
def __init__(self, scaling_factor, dtype, **kwargs):
super().__init__(**kwargs)
self.scaling_factor = tf.cast(scaling_factor, dtype)
def __call__(self, y_true, y_pred, sample_weight=None):
return self.scaling_factor * super().__call__(y_true, y_pred, sample_weight=sample_weight)
def cosine_lr(epoch, lr):
completed_fraction = epoch / FLAGS.epochs
cosine_decayed = 0.5 * (1.0 + tf.cos(tf.constant(math.pi, dtype=tf.float32) * completed_fraction))
lr = max(cosine_decayed * FLAGS.lr, FLAGS.min_lr)
if FLAGS.wandb:
wandb.log({"lr": lr})
return lr
def main(_):
if FLAGS.wandb:
wandb.init(entity="sw-apps", project="GIN-test", config=FLAGS.flag_values_dict())
tf.keras.mixed_precision.set_global_policy("float16" if FLAGS.dtype == "float16" else "float32")
if FLAGS.generated_data:
batch_generator = GeneratedGraphData(
FLAGS.micro_batch_size,
nodes_per_graph=FLAGS.generated_data_n_nodes,
edges_per_graph=FLAGS.generated_data_n_edges,
batches_per_epoch=FLAGS.generated_batches_per_epoch,
n_graphs_per_pack=FLAGS.n_graphs_per_pack,
latent_size=FLAGS.n_latent,
)
else:
batch_generator = PackedBatchGenerator(
dataset_name=FLAGS.dataset_name,
n_packs_per_batch=FLAGS.micro_batch_size,
fold="train",
max_graphs_per_pack=FLAGS.n_graphs_per_pack,
max_edges_per_pack=FLAGS.n_edges_per_pack,
max_nodes_per_pack=FLAGS.n_nodes_per_pack,
n_epochs=FLAGS.epochs,
)
ds = batch_generator.get_tf_dataset()
if FLAGS.global_batch_size is not None:
gradient_accumulation_factor = FLAGS.global_batch_size // (FLAGS.micro_batch_size * FLAGS.replicas)
else:
gradient_accumulation_factor = 1
steps_per_epoch = batch_generator.batches_per_epoch
steps_per_execution_per_replica = steps_per_epoch // FLAGS.replicas
steps_per_execution_per_replica = gradient_accumulation_factor * (
steps_per_execution_per_replica // gradient_accumulation_factor
)
new_steps_per_epoch = steps_per_execution_per_replica * FLAGS.replicas
if new_steps_per_epoch != steps_per_epoch:
logging.warning(
"Steps per epoch has been truncated from"
f" {steps_per_epoch} to {new_steps_per_epoch}"
" in order for it to be divisible by steps per execution."
)
steps_per_epoch = new_steps_per_epoch
logging.info(f"Steps per epoch: {steps_per_epoch}")
logging.info(f"Steps per execution per replica: {steps_per_execution_per_replica}")
optimizer_options = dict(
name=FLAGS.opt.lower(),
learning_rate=FLAGS.lr,
dtype=str_dtype_to_tf_dtype(FLAGS.dtype),
m_dtype=str_dtype_to_tf_dtype(FLAGS.adam_m_dtype),
v_dtype=str_dtype_to_tf_dtype(FLAGS.adam_v_dtype),
gradient_accumulation_factor=gradient_accumulation_factor,
replicas=FLAGS.replicas,
)
# Create a temporary directory for the checkpoints
with tempfile.TemporaryDirectory() as model_dir:
if FLAGS.do_training:
strategy_training = xpu.configure_and_get_strategy(FLAGS.replicas)
with strategy_training.scope():
model = create_model()
utils.print_trainable_variables(model)
if FLAGS.loss_scaling > 1.0:
losses = ScaledBinaryCrossentropy(
scaling_factor=FLAGS.loss_scaling, dtype=str_dtype_to_tf_dtype(FLAGS.dtype)
)
else:
losses = tf.keras.losses.BinaryCrossentropy()
# Weighted metrics are used because of the batch packing
weighted_metrics = [tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC()]
callbacks = [
ThroughputCallback(
# the throughput depends on the COMPUTE batch size, not the TOTAL batch size
samples_per_epoch=batch_generator.n_graphs_per_epoch,
log_wandb=FLAGS.wandb,
)
]
if FLAGS.cosine_lr:
callbacks.append(tf.keras.callbacks.LearningRateScheduler(cosine_lr))
if FLAGS.execution_profile:
callbacks.append(tf.keras.callbacks.TensorBoard(profile_batch=[2], log_dir="logs"))
if FLAGS.wandb:
callbacks.append(wandb.keras.WandbCallback())
logging.info("Running training...")
logging.info(f"Saving weights to {model_dir}")
model_path = os.path.join(model_dir, "model-{epoch:05d}")
callbacks.append(
tf.keras.callbacks.ModelCheckpoint(
model_path,
verbose=1,
save_best_only=False,
save_weights_only=True,
period=FLAGS.checkpoint_every_n_epochs,
)
)
model.compile(
optimizer=get_optimizer(**optimizer_options),
loss=losses,
weighted_metrics=weighted_metrics,
steps_per_execution=steps_per_execution_per_replica,
)
# if the total batch size exceeds the compute batch size
if xpu.IS_IPU:
model.set_gradient_accumulation_options(
gradient_accumulation_steps_per_replica=gradient_accumulation_factor,
offload_weight_update_variables=False,
)
model.fit(ds, steps_per_epoch=steps_per_epoch, epochs=FLAGS.epochs, callbacks=callbacks)
if FLAGS.do_validation:
logging.info(f"Running validation...")
# Use default 1 replica for validation
strategy_val = xpu.configure_and_get_strategy(num_replicas=1)
with strategy_val.scope():
evaluator = Evaluator(name=FLAGS.dataset_name)
if FLAGS.generated_data:
valid_gen = batch_generator
else:
valid_gen = PackedBatchGenerator(
dataset_name=FLAGS.dataset_name,
n_packs_per_batch=FLAGS.micro_batch_size,
fold="valid",
max_graphs_per_pack=FLAGS.n_graphs_per_pack,
max_edges_per_pack=FLAGS.n_edges_per_pack,
max_nodes_per_pack=FLAGS.n_nodes_per_pack,
randomize=False,
)
val_ds = valid_gen.get_tf_dataset().take(valid_gen.batches_per_epoch).cache().repeat()
val_ground_truth, val_include_mask = valid_gen.get_ground_truth_and_masks()
val_ground_truth = val_ground_truth[val_include_mask]
best_val_auc = 0
model = create_model()
model.compile(
optimizer=get_optimizer(**optimizer_options),
weighted_metrics=weighted_metrics,
steps_per_execution=valid_gen.batches_per_epoch,
)
if FLAGS.checkpoint_path:
checkpoint_paths = {-1: FLAGS.checkpoint_path}
logging.info(f"Validating the model with the checkpoint at path {checkpoint_paths}")
else:
checkpoint_paths = {
epoch: os.path.join(model_dir, f"model-{epoch:05d}") for epoch in range(1, FLAGS.epochs + 1)
}
logging.info(f"Validating over a sweep of checkpoints: {checkpoint_paths}")
for epoch, checkpoint_path in checkpoint_paths.items():
model.load_weights(checkpoint_path).expect_partial()
prediction = model.predict(val_ds, steps=valid_gen.batches_per_epoch).squeeze()
if len(val_include_mask) > len(prediction):
val_include_mask = val_include_mask[: len(prediction)]
val_ground_truth = val_ground_truth[: len(prediction)]
# val_include_mask may be shorter than the predictions —
# that is fine (it will just be padding after that point)
prediction = prediction[: len(val_include_mask)][val_include_mask.squeeze() == 1]
# we will use the official AUC evaluator from the OGB repo, not the keras one
result = evaluator.eval({"y_true": val_ground_truth[:, None], "y_pred": prediction[:, None]})
this_auc = result["rocauc"]
if FLAGS.wandb:
wandb.log({"epoch": epoch, "val_auc": this_auc})
if this_auc > best_val_auc:
best_val_auc = this_auc
best_model_path = checkpoint_path
logging.info(f"{best_val_auc:.3f} is the validation set AUC for the model at {best_model_path}")
if FLAGS.do_test:
logging.info(f"Running test...")
# Use default 1 replica for test
strategy_test = xpu.configure_and_get_strategy(num_replicas=1)
with strategy_test.scope():
if FLAGS.generated_data:
test_gen = batch_generator
else:
test_gen = PackedBatchGenerator(
dataset_name=FLAGS.dataset_name,
n_packs_per_batch=FLAGS.micro_batch_size,
fold="test",
max_graphs_per_pack=FLAGS.n_graphs_per_pack,
max_edges_per_pack=FLAGS.n_edges_per_pack,
max_nodes_per_pack=FLAGS.n_nodes_per_pack,
randomize=False,
)
model = create_model()
model.compile(
optimizer=get_optimizer(**optimizer_options),
weighted_metrics=weighted_metrics,
steps_per_execution=test_gen.batches_per_epoch,
)
test_ds = test_gen.get_tf_dataset().take(test_gen.batches_per_epoch).cache().repeat()
test_ground_truth, test_include_mask = test_gen.get_ground_truth_and_masks()
test_ground_truth = test_ground_truth[test_include_mask]
if FLAGS.checkpoint_path:
checkpoint_path = FLAGS.checkpoint_path
logging.info(f"Testing the model with the checkpoint at path {checkpoint_path}")
else:
logging.info(f"Testing the model with the best validation loss (at {best_model_path})")
checkpoint_path = best_model_path
model.load_weights(checkpoint_path).expect_partial()
prediction = model.predict(test_ds, steps=test_gen.batches_per_epoch).squeeze()
if len(test_include_mask) > len(prediction):
test_include_mask = test_include_mask[: len(prediction)]
test_ground_truth = test_ground_truth[: len(prediction)]
prediction = prediction[: len(test_include_mask)][test_include_mask.squeeze() == 1]
result = evaluator.eval({"y_true": test_ground_truth[:, None], "y_pred": prediction[:, None]})
this_auc = result["rocauc"]
logging.info(f"\nTest AUC of {this_auc:.3f}")
if FLAGS.wandb:
wandb.log({"test_auc": this_auc, "best_val_auc": best_val_auc})
if __name__ == "__main__":
app.run(main)