-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathargs.py
390 lines (356 loc) · 14.8 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import sys
import torch
import yaml
import popdist
import popdist.poptorch
import horovod.torch as hvd
from utils import logger
def str_to_bool(value):
if isinstance(value, bool) or value is None:
return value
if value.lower() in {"false", "f", "0", "no", "n"}:
return False
elif value.lower() in {"true", "t", "1", "yes", "y"}:
return True
raise argparse.ArgumentTypeError(f"{value} is not a valid boolean value")
def dict_arg(arg):
val = yaml.safe_load(arg)
if not isinstance(val, dict):
raise argparse.ArgumentTypeError(f"{arg} is not a valid dict value")
return val
def init_popdist(args):
popdist.init()
hvd.init()
args.use_popdist = True
if popdist.getNumTotalReplicas() != args.replication_factor:
logger(f"The number of replicas is overridden by PopRun. " f"The new value is {popdist.getNumTotalReplicas()}.")
args.replication_factor = int(popdist.getNumLocalReplicas())
args.popdist_rank = popdist.getInstanceIndex()
args.popdist_size = popdist.getNumInstances()
def parse_bert_args(args=None, config_file="configs_pretraining.yml"):
config_file = os.path.join(os.path.dirname(__file__), config_file)
pparser = argparse.ArgumentParser("BERT Configuration name", add_help=False)
pparser.add_argument("--config", type=str, default="demo_tiny_128", help="Configuration Name")
pargs, remaining_args = pparser.parse_known_args(args=args)
config_name = pargs.config
parser = argparse.ArgumentParser(
"PopTorch BERT", add_help=True, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Execution
parser.add_argument(
"--micro-batch-size",
type=int,
help="Set the micro-batch-size. This is the single forward-backward path batch-size on one replica",
)
parser.add_argument("--training-steps", type=int, help="Number of training steps")
parser.add_argument("--device-iterations", type=int, help="Number of batches per training step")
parser.add_argument("--replication-factor", type=int, help="Number of replicas")
parser.add_argument(
"--gradient-accumulation", type=int, help="Number of gradients to accumulate before updating the weights"
)
parser.add_argument(
"--embedding-serialization-factor", type=int, help="Matmul serialization factor the embedding layers"
)
parser.add_argument(
"--recompute-checkpoint-every-layer",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="This controls how recomputation is handled in pipelining. "
"If True the output of each encoder layer will be stashed keeping the max liveness "
"of activations to be at most one layer. "
"However, the stash size scales with the number of pipeline stages so this may not always be beneficial. "
"The added stash + code could be greater than the reduction in temporary memory.",
)
parser.add_argument(
"--enable-half-partials",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Enable half partials for matmuls and convolutions globally",
)
parser.add_argument(
"--optimizer-state-offchip",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Set the tensor storage location for optimizer state to be offchip.",
)
parser.add_argument(
"--replicated-tensor-sharding",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Enable replicated tensor sharding of optimizer state",
)
parser.add_argument("--ipus-per-replica", type=int, help="Number of IPUs required by each replica")
parser.add_argument(
"--layers-per-ipu",
type=int,
nargs="+",
help="Number of encoders placed on each IPU. Can be a single number, for an equal number encoder layers per IPU.\
Or it can be a list of numbers, specifying number of encoder layers for each individual IPU.",
)
parser.add_argument(
"--matmul-proportion", type=float, nargs="+", help="Relative IPU memory proportion size allocated for matmul"
)
parser.add_argument(
"--async-dataloader",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Enable asynchronous mode in the DataLoader",
)
parser.add_argument("--random-seed", type=int, help="Seed for RNG")
parser.add_argument("--num-epochs", type=int, help="SQuAD only - number of epochs to train for")
# Optimizer
parser.add_argument(
"--optimizer",
type=str,
choices=["AdamW", "LAMB", "LAMBNoBiasCorrection"],
help="optimizer to use for the training",
)
parser.add_argument(
"--learning-rate", type=float, help="Learning rate value for constant schedule, maximum for linear schedule."
)
parser.add_argument(
"--lr-schedule",
type=str,
choices=["constant", "linear"],
help="Type of learning rate schedule. --learning-rate will be used as the max value",
)
parser.add_argument(
"--lr-warmup", type=float, help="Proportion of lr-schedule spent in warm-up. Number in range [0.0, 1.0]"
)
parser.add_argument(
"--auto-loss-scaling",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Enable automatic loss scaling\
for half precision training.",
)
parser.add_argument(
"--loss-scaling",
type=float,
help="Loss scaling factor (recommend using powers of 2).\
If using automatic loss scaling, this value will be the initial value.",
)
parser.add_argument("--weight-decay", type=float, help="Set the weight decay")
parser.add_argument(
"--enable-half-first-order-momentum",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Use float16 for the first order momentum in the optimizer.",
)
parser.add_argument(
"--squad-do-training",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Do SQuAD training (run_squad only)",
)
parser.add_argument(
"--squad-do-validation",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Do SQuAD validation (run_squad only)",
)
# Model
parser.add_argument("--sequence-length", type=int, help="The max sequence length")
parser.add_argument("--mask-tokens", type=int, help="Set the max number of MLM tokens in the input dataset.")
parser.add_argument("--vocab-size", type=int, help="Set the size of the vocabulary")
parser.add_argument("--hidden-size", type=int, help="The size of the hidden state of the transformer layers")
parser.add_argument("--intermediate-size", type=int, help="hidden-size*4")
parser.add_argument("--num-hidden-layers", type=int, help="The number of transformer layers")
parser.add_argument("--num-attention-heads", type=int, help="Set the number of heads in self attention")
parser.add_argument("--layer-norm-eps", type=float, help="The eps value for the layer norms")
# Hugging Face specific
parser.add_argument(
"--attention-probs-dropout-prob", type=float, nargs="?", const=True, help="Attention dropout probability"
)
# Dataset
parser.add_argument("--input-files", type=str, nargs="+", help="Input data files")
parser.add_argument(
"--dataset", type=str, choices=["generated", "pretraining"], help="dataset to use for the training"
)
parser.add_argument(
"--synthetic-data",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="No Host/IPU I/O, random data created on device",
)
parser.add_argument(
"--squad-v2",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Use SQuAD v2 dataset (run_squad only)",
)
parser.add_argument("--packed-data", type=str_to_bool, nargs="?", const=True, default=False, help="Use packed data")
parser.add_argument("--packing-factor", type=dict_arg, help="Packing factor")
parser.add_argument(
"--max-sequences-per-pack",
type=int,
choices=[2, 3],
default=3,
help="The maximum number of sequences per packed example.",
)
# Misc
parser.add_argument("--dataloader-workers", type=int, help="The number of dataloader workers")
parser.add_argument("--profile-dir", type=str, help="Enable profiling and store results in this directory")
parser.add_argument("--custom-ops", type=str_to_bool, nargs="?", const=True, default=True, help="Enable custom ops")
parser.add_argument(
"--wandb", type=str_to_bool, nargs="?", const=True, default=False, help="Enabling logging to Weights and Biases"
)
parser.add_argument(
"--wandb-param-steps",
type=int,
default=None,
help="Log the model parameter statistics to Weights and Biases after every n training steps",
)
parser.add_argument(
"--disable-progress-bar",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Disable the training progress bar. This is useful if you want to parse the stdout of a run",
)
parser.add_argument(
"--compile-only",
action="store_true",
help="Create an offline IPU target that can only be used for offline compilation.",
)
parser.add_argument(
"--executable-cache-dir",
type=str,
default="",
help="Directory where Poplar executables are cached. If set, recompilation of identical graphs can be avoided. "
"Required for both saving and loading executables.",
)
# Checkpointing
parser.add_argument(
"--checkpoint-output-dir",
type=str,
default="",
help="Directory where checkpoints will be saved to.\
This can be either an absolute or relative path.",
)
parser.add_argument(
"--checkpoint-steps", type=int, default=None, help="Option to checkpoint model after every n training steps."
)
parser.add_argument(
"--resume-training-from-checkpoint",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Restore both the model checkpoint and training state in order to resume a training run.",
)
parser.add_argument(
"--checkpoint-input-dir",
type=str,
default="",
help="Checkpoint to be retrieved for further training. This can\
be either an absolute or relative path to the checkpoint directory or the name of a model on HuggingFace model hub.",
)
# This is here only for the help message
parser.add_argument("--config", type=str, help="Configuration name")
# Load the yaml
yaml_args = dict()
if config_name is not None:
with open(config_file, "r") as f:
try:
yaml_args.update(**yaml.safe_load(f)[config_name])
except yaml.YAMLError as exc:
print(exc)
sys.exit(1)
# Check the yaml args are valid
known_args = set(vars(parser.parse_args("")))
unknown_args = set(yaml_args) - known_args
if unknown_args:
logger(f" Warning: Unknown arg(s) in config file: {unknown_args}")
parser.set_defaults(**yaml_args)
args = parser.parse_args(remaining_args)
logger(f"Using config: {config_name}")
# Initialise PopDist
if popdist.isPopdistEnvSet():
init_popdist(args)
hvd.broadcast(torch.Tensor([args.random_seed]), root_rank=0)
else:
args.use_popdist = False
# Expand layers_per_ipu input into list representation
if isinstance(args.layers_per_ipu, int):
args.layers_per_ipu = [args.layers_per_ipu]
if len(args.layers_per_ipu) == 1:
layers_per_ipu_ = args.layers_per_ipu[0]
args.layers_per_ipu = [layers_per_ipu_] * (args.num_hidden_layers // layers_per_ipu_)
if sum(args.layers_per_ipu) != args.num_hidden_layers:
parser.error(
f"layers_per_ipu not compatible with number of hidden layers: {args.layers_per_ipu} and {args.num_hidden_layers}"
)
# Expand matmul_proportion input into list representation
if isinstance(args.matmul_proportion, float):
args.matmul_proportion = [args.matmul_proportion] * args.ipus_per_replica
if len(args.matmul_proportion) != args.ipus_per_replica:
if len(args.matmul_proportion) == 1:
args.matmul_proportion = args.matmul_proportion * args.ipus_per_replica
else:
parser.error(
f"Length of matmul_proportion doesn't match ipus_per_replica: {args.matmul_proportion} vs {args.ipus_per_replica}"
)
if args.checkpoint_steps is not None and args.checkpoint_steps < 1:
parser.error("checkpoint-steps must be >=1")
# Handle packing_factor
if args.packed_data:
args.packing_factor = args.packing_factor[args.sequence_length]
if type(args.packing_factor) is not float:
raise argparse.ArgumentTypeError("packing_factor value is not float type")
# Adjust gradient accumulation down by packing factor
old_gradient_accumulation = args.gradient_accumulation
args.gradient_accumulation = math.ceil(args.gradient_accumulation / args.packing_factor)
logger(
f"Packing enabled. Adjusting gradient accumulation down by the packing factor, {args.packing_factor}: {old_gradient_accumulation} -> {args.gradient_accumulation}"
)
if args.use_popdist:
args.global_batch_size = (
args.replication_factor * args.gradient_accumulation * args.micro_batch_size * args.popdist_size
)
else:
args.global_batch_size = args.replication_factor * args.gradient_accumulation * args.micro_batch_size
args.samples_per_step = (
args.replication_factor * args.gradient_accumulation * args.micro_batch_size * args.device_iterations
)
args.intermediate_size = args.hidden_size * 4
return args