-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
58 lines (45 loc) · 2.46 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
class batch_norm(object):
def __init__(self, epsilon = 1e-5, momentum = 0.5, name = "batch_norm"):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train = True):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name)
def conv2d(input_, output_dim, k_h=3, k_w=3, d_h=1, d_w=1, stddev=0.02, name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.nn.bias_add(conv, biases)
return conv
def deconv2d(input_, output_shape, k_h=4, k_w=4, d_h=2, d_w=2, stddev=0.02, name="deconv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer = tf.random_normal_initializer(stddev = stddev))
deconv = tf.nn.conv2d_transpose(input_, w, output_shape = output_shape, strides = [1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer = tf.constant_initializer(0.0))
deconv = tf.nn.bias_add(deconv, biases)
return deconv
def leakyReLU(x, leak = 0.2, name="leakyReLU"):
return tf.maximum(x, leak * x)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias