-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathclassifier.py
242 lines (177 loc) · 9.03 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import print_function, division
import scipy
from keras.datasets import mnist
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply
from keras.layers import Reshape
from keras.layers.merge import concatenate
import datetime
import matplotlib.pyplot as plt
import sys
from data_loader import DataLoader
import numpy as np
import os
import random
from sklearn.metrics import accuracy_score, log_loss, roc_auc_score
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
class CCycleGAN():
def __init__(self,img_rows = 48,img_cols = 48,channels = 1, num_classes=7, latent_dim=99):
# Input shape
self.img_rows = img_rows
self.img_cols = img_cols
self.channels = channels
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.num_classes = num_classes
self.latent_dim = latent_dim
## dict
self.lab_dict = {0: "Angry", 1: "Disgust" , 2: "Fear" , 3: "Happy" , 4: "Sad" , 5: "Surprise" , 6: "Neutral"}
# Configure data loader
self.dataset_name = 'fer2013'
self.data_loader = DataLoader(dataset_name=self.dataset_name,img_res=self.img_shape)
# Calculate output shape of D (PatchGAN)
patch = int(self.img_rows / 2**4)
self.disc_patch = (patch, patch, 1)
# Number of filters in the first layer of G and D
self.gf = 32
self.df = 64
# Loss weights
self.lambda_cycle = 10.0 # Cycle-consistency loss
self.lambda_id = 0.1 * self.lambda_cycle # Identity loss
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminators
self.d = self.build_discriminator2()
print("******** Discriminator ********")
self.d.summary()
self.d.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
#-------------------------
# Construct Computational
# Graph of Generators
#-------------------------
def build_discriminator(self):
def d_layer(layer_input, filters, f_size=4, normalization=True):
"""Discriminator layer"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if normalization:
d = InstanceNormalization()(d)
return d
img = Input(shape=self.img_shape)
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
flat_img = Flatten()(img)
model_input = multiply([flat_img, label_embedding])
d0 = Reshape(self.img_shape)(model_input)
d1 = d_layer(d0, self.df, normalization=False)
d2 = d_layer(d1, self.df*2)
d3 = d_layer(d2, self.df*4)
d4 = d_layer(d3, self.df*8)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
d5 = Dense(128)(validity)
d6 = LeakyReLU(alpha=0.2)(d5)
d7 = Dropout(0.4)(d6)
d77 = Flatten()(d7)
d8 = Dense(1, activation='sigmoid')(d77)
return Model([label,img], d8)
def build_discriminator2(self):
#img = Input(shape=self.img_shape)
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))
#flat_img = Flatten()(img)
#model_input = multiply([flat_img, label_embedding])
base_model = ResNet50(weights= 'imagenet', include_top=False, input_shape= (48,48,3))
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
#latent_vect = Flatten()(x)
latent_concat = concatenate([x, label_embedding])
# let's add a fully-connected layer
f = Dense(1024, activation='relu')(latent_concat)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(1, activation='sigmoid')(f)
return Model([label,base_model.input], predictions)
def generate_new_labels(self,labels0):
labels1 = []
for i in range(len(labels0)):
allowed_values = list(range(0, self.num_classes))
allowed_values.remove(labels0[i])
labels1.append(random.choice(allowed_values))
return np.array(labels1,'int32')
def train(self, epochs, batch_size=1, sample_interval=50):
start_time = datetime.datetime.now()
# Adversarial loss ground truths
valid = np.ones((batch_size,1))
fake = np.zeros((batch_size,1))
for epoch in range(epochs):
for batch_i, (labels0 , imgs) in enumerate(self.data_loader.load_batch(batch_size=batch_size,convertRGB=True)):
labels1 = self.generate_new_labels(labels0)
#labels01 = self.generate_new_labels(labels0)
idx = np.random.permutation(2*labels1.shape[0])
_labels = np.concatenate((labels0,labels1))
_imgs = np.concatenate((imgs,imgs))
_vf = np.concatenate((valid,fake))
_labels = _labels[idx]
_imgs = _imgs[idx]
_vf = _vf[idx]
# ----------------------
# Train Discriminators
# ----------------------
# Train the discriminators (original images = real / translated = Fake)
d_loss = self.d.train_on_batch([_labels,_imgs], _vf)
#d_loss_real = self.d.train_on_batch([labels0,imgs], valid)
#d_loss_real_fake = self.d.train_on_batch([labels01,imgs], fake)
#d_loss = (1/2) * np.add(d_loss_real, d_loss_real_fake)
elapsed_time = datetime.datetime.now() - start_time
# Plot the progress
print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %3d%%] time: %s " \
% ( epoch, epochs,
batch_i, self.data_loader.n_batches,
d_loss[0], 100*d_loss[1],
elapsed_time))
# If at save interval => save generated image samples
if batch_i % sample_interval == 0:
self.sample_images(epoch, batch_i)
def sample_images(self, epoch, batch_i):
t1 = np.ones(self.data_loader.lab_vect_test.shape[0])
t0 = np.zeros(self.data_loader.lab_vect_test.shape[0])
t = np.concatenate((t0,t1))
print("t:",t.shape)
print("t:",t)
labels1_ = self.generate_new_labels(self.data_loader.lab_vect_test)
test_imgs = self.data_loader.img_vect_test_RGB
pred_prob_fake = self.d.predict([labels1_,test_imgs])
pred_prob_valid_ = self.d.predict([self.data_loader.lab_vect_test,test_imgs])
pred_probs = np.concatenate((pred_prob_fake.squeeze(),pred_prob_valid_.squeeze()))
preds = (pred_probs > 0.5)*1
print("preds:",preds.shape)
print("preds:",preds)
print("pred_probs:",pred_probs.shape)
print("pred_probs:",pred_probs)
print("acc[perfect]:",accuracy_score(t,t))
print("log_loss[perfect]:",log_loss(t,t))
print("roc_auc_score[perfect]:",roc_auc_score(t,t))
print("acc[perfect]:",accuracy_score(preds,preds))
#print("log_loss[perfect]:",log_loss(pred_probs,pred_probs))
#print("roc_auc_score[perfect]:",roc_auc_score(pred_probs,pred_probs))
acc = accuracy_score(t,preds)
ll = log_loss(t,pred_probs)
auc = roc_auc_score(t,pred_probs)
print("Accuracy[test:"+str(self.data_loader.lab_vect_test.shape[0])+"]:",acc)
print("LogLoss[test:"+str(self.data_loader.lab_vect_test.shape[0])+"]:",ll)
print("AUC[test:"+str(self.data_loader.lab_vect_test.shape[0])+"]:",auc)
if __name__ == '__main__':
gan = CCycleGAN()
gan.train(epochs=200, batch_size=64, sample_interval=200)