-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_mountainsort_clusters.py
200 lines (132 loc) · 8.81 KB
/
plot_mountainsort_clusters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import matplotlib.pylab as plt
from scipy import stats,signal
import seaborn as sns
import sys,os
sns.set_style('ticks')
plt.rcParams['pdf.fonttype'] = 'truetype'
import pandas as pd
import json
sys.path.append("/Users/guitchounts/Documents/GitHub/mountainlab/old/WIP/python/mda/")
sys.path.append('/Users/guitchounts/Dropbox (coxlab)/Scripts/Repositories/continuous-ephys/utils')
sys.path.append('/n/home11/guitchounts/code/continuous-ephys/utils')
sys.path.append('/n/home11/guitchounts/code/mountainlab/old/WIP/python/mda/')
from utils import read_titan_rhd
from mdaio import readmda
def filter(ephys,freq_range,filt_order = 4,filt_type='bandpass',fs=10.):
# design Elliptic filter:
[b,a] = signal.butter(filt_order,[freq/(fs/2) for freq in freq_range],btype=filt_type)
filtered_trace = signal.filtfilt(b,a,ephys,axis=0)
return filtered_trace
if __name__ == "__main__":
#tet4_firings = readmda('/Volumes/coxfs01/guitchounts/MountainSortCluster-master/TetrodeData/Tetrode4/data/firings2-4.mda')
### starting in a dir like GRat54/636xxxxx/0/
#tetrode_num = 1
waveform_stats = {}
for tetrode_num in range(1,17):
waveform_stats[tetrode_num] = {}
tet_raw = readmda('./TetrodeData/Tetrode%d/data/rawT%d.mda' %(tetrode_num,tetrode_num))
## ^^ can also load from original RHD file.
#### this stuff will actually be on /n/regal (or wherever you put it)
clust_dir = './Tetrode%d/mountainlab/prvbucket/_mountainprocess/' % tetrode_num
firings_files = [out_file for out_file in os.listdir(clust_dir) if out_file.startswith('output_firings_out')]
output_firings_out = firings_files[np.argmax([os.path.getsize(clust_dir + file) for file in firings_files])]
cluster_times_ids = readmda(clust_dir + output_firings_out)
metrics_files = [out_file for out_file in os.listdir(clust_dir) if out_file.startswith('output_metrics_out')]
output_metrics_out = metrics_files[np.argmax([os.path.getsize(clust_dir + file) for file in metrics_files])]
metrics_path = (clust_dir + output_metrics_out)
with open(metrics_path) as json_data_file:
metrics = json.load(json_data_file)
# rhd_path = '/Volumes/coxfs01/guitchounts/ephys/GRat27/636520606779599145.rhd'
# rhd = read_titan_rhd.ReadTitanRHD(rhd_path)
# length = 1e6
# ephys_timestamps,acc,ephys = rhd.read_file(length)
fs = 3e4
tet_filt = filter(tet_raw.T,[800,8e3],fs=fs).T
### Gather the avg waveforms from each cluster:
## for plotting purposes, want a mat with the extracted waveforms:
## e.g. 4x 32 x 100000 waveforms. use cluster_times_ids mat to separate cluster IDs.
## in tet_filt, find the indexes of spiketimes and extract -16 until +16 timepoints for each.
spike_width = 64 # number of samples to take, centered at spike peak. #(16,16)
waveforms = [] ## list of arrays. length = number of clusters
isis = []
for clu in np.unique(cluster_times_ids[2,:]): #[9.,11.]: #
tmp_waveforms = np.empty([4,np.where(cluster_times_ids[2,:] == clu)[0].shape[0],spike_width]) ### 4xnum_spikesx32
peaks = cluster_times_ids[1,np.where(cluster_times_ids[2,:]==clu)[0]].astype('int') ## index of tet4 where peak happens
clu_times = cluster_times_ids[1,np.where(cluster_times_ids[2,:]==clu)[0]]
#clu_times = xx[1,np.where(xx[2,:]==clu)[0]]
isis.append(np.diff(clu_times)/fs*1e3) ## in milliseconds
tmp_waveforms = tet_filt[:,[np.arange(peak-spike_width/2,peak+spike_width/2) for peak in peaks]]
waveforms.append(tmp_waveforms)
#### Make the figure
clusts = np.unique(cluster_times_ids[2,:]).astype('int')
f,axarr = plt.subplots(len(clusts),3,dpi=600,sharey='col',gridspec_kw={'hspace':2,'wspace':0,'width_ratios':[1,2,4]})
#'width_ratios':[1,2]}) # , figsize=(2,6)
#print('clusts = ',clusts)
for clu_idx,clu in enumerate(clusts):
waveform_stats[tetrode_num][clu] = {'widths' : [], 'heights' : [], 'slopes' : [], 'metrics' : [] }
for ch in range(4):
#clust_times = np.where(xx[2,:].astype('int') == 9)[0]
#axarr[clu_idx].plot(range(0+32*ch,32+32*ch), np.mean(waveforms[clu_idx][ch,:,:],axis=0))
#print('clu,waveforms[clu_idx].shape = ',clu,waveforms[clu_idx].shape)
y = np.mean(waveforms[clu_idx][ch,:,:],axis=0)
err = np.std(waveforms[clu_idx][ch,:,:],axis=0)
x = range(0+spike_width*ch,spike_width+spike_width*ch)
axarr[clu_idx,0].plot(x,y,c='k',lw=.25)
axarr[clu_idx,0].fill_between(x, y-err, y+err,alpha=.25,color='k',linewidth=0)
axarr[clu_idx,0].set_title('%d Spikes in Cluster %d' % (waveforms[clu_idx].shape[1],clu),fontdict={'fontsize' : 6})
#axarr[clu_idx,1].hist(isis[clu_idx],bins=200)
### get waveform stats (width, peak:trough, slope at the end, firing rates )
min_wv = np.argmin(y)
max_wv = min_wv + np.argmax(y.flatten()[min_wv:]) ### [min_wv:min_wv+spike_width/2])
#width = (max_wv - min_wv) / fs * 1e3
#height = abs(y.flatten()[max_wv]) / abs(y.flatten()[min_wv])
peak = spike_width/2
if y[peak] < 0:
max_post_peak = np.argmax(y.flatten()[peak:])
elif y[peak] > 0:
max_post_peak = np.argmin(y.flatten()[peak:])
width = (max_post_peak - peak) / fs * 1e3 ## in ms
height = abs(y.flatten()[peak]) / abs(y.flatten()[max_post_peak])
slope = np.mean(np.gradient( y[-spike_width/4 : ] )) ## take the mean gradient of the end of the spike waveform...
waveform_stats[tetrode_num][clu]['widths'].append(width)
waveform_stats[tetrode_num][clu]['heights'].append(height)
waveform_stats[tetrode_num][clu]['slopes'].append(slope)
#clu_isi = np.diff(clu_times) ## convert from seconds to ms
axarr[clu_idx,1].hist(isis[clu_idx],bins=np.logspace(-1,2,100),range=[0.1,100],histtype='stepfilled')
#n, bins, patches =
#plt.setp(patches, 'facecolor', 'magenta', 'alpha', 0.5)
axarr[clu_idx,1].set_xscale('log')
axarr[clu_idx,1].set_xlim([0.1, 100])
if len(isis[clu_idx]) > 1:
violations = np.float(len(np.where(isis[clu_idx]<=1.0)[0])) / np.float(len(isis[clu_idx])) * 100
else:
violations = 0
axarr[clu_idx,1].set_title('Violations: %.2f%% <1ms' % (violations),fontdict={'fontsize' : 4})
axarr[clu_idx,0].axes.xaxis.set_ticklabels([])
axarr[clu_idx,0].axes.xaxis.set_ticks([])
axarr[clu_idx,1].axes.xaxis.set_ticklabels([])
axarr[clu_idx,1].axes.xaxis.set_ticks([])
axarr[clu_idx,1].axes.yaxis.set_ticklabels([])
axarr[clu_idx,1].axes.yaxis.set_ticks([])
waveform_stats[tetrode_num][clu]['metrics'] = metrics['clusters'][clu_idx] #['firing_rate']
axarr[clu_idx,2].text(0,0,metrics['clusters'][clu_idx],wrap=True,fontdict={'fontsize' : 4})
axarr[clu_idx,2].axes.yaxis.set_ticklabels([])
axarr[clu_idx,2].axes.yaxis.set_ticks([])
axarr[clu_idx,2].axes.xaxis.set_ticklabels([])
axarr[clu_idx,2].axes.xaxis.set_ticks([])
axarr[-1,1].set_xlabel('ISI (ms)')
axarr[-1,1].axes.xaxis.set_ticklabels([0.1,1,10,100])
axarr[-1,1].axes.xaxis.set_ticks([0.1,1,10,100])
#axarr[i].plot(np.mean(tet4_filt[i,[np.arange(j-32,j+32) for j in clust_times]],axis=0))
#axarr[i].plot(16,peaks[i,clust_times],'x')
#plt.tight_layout()
sns.despine(left=True,bottom=True)
save_path = './Tetrode%d' % tetrode_num
f.savefig(save_path + '/clusters.pdf')
# save cluster results with spike times:
d = dict(times = cluster_times_ids[1,:]/3e4,clusters=cluster_times_ids[2,:]) ### save times in seconds and cluster assignments
cluster_assignments = pd.DataFrame.from_dict(d)
cluster_assignments.to_csv(save_path + '/cluster_assignments.csv')
waveform_stats_frame = pd.DataFrame.from_dict(waveform_stats)
waveform_stats_frame.to_csv(save_path + '/waveform_stats.csv')