-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplottest.py
127 lines (102 loc) · 4.01 KB
/
plottest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import sys
sys.path.append('/Volumes/Mac HD/Dropbox (coxlab)/Scripts/Repositories/continuous-ephys/open-ephys analysis/')
import OpenEphys
import numpy as np
import matplotlib.pyplot as plt
#eventsfile = "/Volumes/labuser/Desktop/EPHYS/test data/10HzDigitalInput/2015-05-11_14-06-08_diginputtest/all_channels.events"
#eventsfile = "/Volumes/GG Data Raid/Ephys/2015-04-29_17-35-04_digitalinputtest/all_channels_4.events"
#eventsfile = "/Volumes/labuser/Desktop/EPHYS/test data/MWorksPixelInput/2015-05-11_15-53-23_digintest/all_channels.events"
#eventsfile = "/Volumes/labuser/Desktop/EPHYS/test data/MWorksPixelInput/2015-05-12_12-00-22_digintest/all_channels.events"
#eventsfile = "/Volumes/labuser/Desktop/EPHYS/test data/MWorksPixelInput/2015-05-12_17-51-29_captest/all_channels_2.events"
eventsfile = "/Volumes/labuser/Desktop/EPHYS/Data/grat03/2015-05-30_12-46-18/all_channels.events"
events_data = OpenEphys.load(eventsfile)
pixel_ch1 = [] # np.zeros((len(events_data['timestamps']),1))
pixel_ch2 = [] #np.zeros((len(events_data['timestamps']),1))
pixel_ch1_time = [] #np.zeros((len(events_data['timestamps']),1))
pixel_ch2_time = []
counter = 0
while counter < len(events_data['timestamps']): # go thru all timestamps
if events_data['channel'][counter] == 3:
if events_data['eventId'][counter] == 1:
pixel_ch1.append(1)
pixel_ch1_time.append(events_data['timestamps'][counter])
elif events_data['eventId'][counter] == 0:
pixel_ch1.append(0)
pixel_ch1_time.append(events_data['timestamps'][counter])
else:
pass
elif events_data['channel'][counter] == 4:
if events_data['eventId'][counter] == 1:
pixel_ch2.append(1)
pixel_ch2_time.append(events_data['timestamps'][counter])
elif events_data['eventId'][counter] == 0:
pixel_ch2.append(0)
pixel_ch2_time.append(events_data['timestamps'][counter])
else:
pass
else:
pass
counter += 1
fs = 30000
time1 = [i/fs for i in pixel_ch1_time]
time2 = [i/fs for i in pixel_ch2_time]
from scipy.signal import butter, lfilter, filtfilt
def butter_bandpass(lowcut, highcut, fs, order=6):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='stop')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order=6):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
#y = lfilter(b, a, data)
filt_data = filtfilt(b,a,data)
return filt_data
#filt_data = butter_bandpass_filter(pixel_ch1,200,300,fs)
from scipy import fft, ifft
def notchfilter(data):
""" Filters the data using notch filter
Description:
Digital filter which returns the filtered signal using 60Hz
notch filter. Transforms the signal into frequency domain
using the fft function of the Scipy Module. Then, suppresses
the 60Hz signal by equating it to zero. Finally, transforms
the signal back to time domain using the ifft function.
Input:
ECGdata -- list of integers (ECG data)
Output:
ifft(fftECG) -- inverse fast fourier transformed array of filtered ECG data
"""
fft_data = fft(data)
for i in range(len(fft_data)):
if 200<i<300: fft_data[i]=0
return ifft(fft_data)
filt_data = notchfilter(pixel_ch1)
ax1 = plt.subplot(2, 1, 1)
plt.plot(time1, pixel_ch1,'-*')
ax2 = plt.subplot(2, 1, 2,sharex=ax1)
plt.plot(time2, pixel_ch2,'-*')
plt.show()
print pixel_ch2[0:50]
print pixel_ch2_time[0:50]
print time[0:50]
"""
pixel_ch1 = np.zeros((len(events_data['timestamps']),1))
pixel_ch2 = np.zeros((len(events_data['timestamps']),1))
counter = 0
while counter < len(events_data['timestamps']): # go thru all timestamps
if events_data['channel'][counter] == 3:
pixel_ch1[counter] = 1
elif events_data['channel'][counter] == 4:
pixel_ch2[counter] = 1
else:
pass
counter += 1
#print pixel_ch1
plt.subplot(2, 1, 1)
plt.plot(events_data['timestamps'],pixel_ch1)
plt.subplot(2, 1, 2)
plt.plot(events_data['timestamps'],pixel_ch2)
plt.show()
"""
#print events_data