-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsleep_plot.py
158 lines (113 loc) · 3.95 KB
/
sleep_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import os
import sys
import re
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import pandas as pd
import numpy.matlib
from bokeh.plotting import figure,show
from bokeh.io import output_notebook
from matplotlib import gridspec
from sklearn import preprocessing
def tryint(s):
try:
return int(s)
except:
return s
def alphanum_key(s):
""" Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"]
"""
return [ tryint(c) for c in re.split('([0-9]+)', s) ]
def sort_nicely(l):
""" Sort the given list in the way that humans expect.
"""
l.sort(key=alphanum_key)
def concat_data(trace_files):
# make one big array with all traces:
power_data = []
windowed_data = []
t = []
freqs = []
for file in trace_files:
print 'Loading file ', file
tmp_file = np.load(file)
power_data.append(tmp_file['power_data'][:,0:273].T) # [:,0:273]=Pxx; [:,273]=freqs
windowed_data.append(tmp_file['windowed_data'])
freqs.append(tmp_file['power_data'][:,273])
t.append(tmp_file['t'])
tmp_file.close()
windowed_data = np.array(windowed_data)
power_data = np.array(power_data).T
power_data = np.reshape(power_data,[power_data.shape[0],power_data.shape[1] * power_data.shape[2]])
freqs = np.array(freqs)
return windowed_data,power_data,freqs,t
def get_big_time(t):
big_time_vec = t[0]
for i,t_x in enumerate(t):
if i>0:
#print i*max(t[0])
tmp = t[0] + i*max(t[0])
big_time_vec = np.append(big_time_vec,tmp)
return big_time_vec
def get_freq_idx(freqs,desired_freq): # make desired_freq a tuple, e.g. (0,4)
idx = []
for counter,value in enumerate(freqs):
if desired_freq[0] <= value <= desired_freq[1]:
#yield counter
idx.append(counter)
return idx
def power_auc(trace,channel,freq_range): #### e.g. power_auc(power_data,'lfp',(0,25))
idx = get_freq_idx(freqs[0,:][channel],freq_range)
Pxx = trace[idx,:][channel]
Pxx_intgr = stats.zscore(np.trapz(Pxx,axis=0))
return Pxx_intgr
def plot_spec(power_data,freqs,t):
####### PLOT STUFF #########
print("Plotting stuff...")
idx_0_50Hz = get_freq_idx(freqs[0,:]['lfp'],(0,50))
idx_0_25 = get_freq_idx(freqs[0,:]['lfp'],(0,25))
Pxx_lfp_0_25 = power_data[idx_0_25,:]['lfp']
#Pxx_lfp_0_25_intgr = stats.zscore(np.trapz(Pxx_lfp_0_25,axis=0))
Pxx_lfp_0_25_intgr = power_auc(power_data,'lfp',(0,25))
Pxx_emg_0_100_intgr = power_auc(power_data,'emg',(0,100))
print 'shape of Pxx_lfp_0_25 = ', Pxx_lfp_0_25.shape
#make Pandas dataframe out of Pxx for plotting heatmap
big_time_vec = get_big_time(t)
b = pd.DataFrame(data=Pxx_lfp_0_25,
index = freqs[0,idx_0_25]['lfp'],
columns = big_time_vec )
pca = PCA(n_components=2,whiten=True)
broadband_lfp_pca = pca.fit(Pxx_lfp_0_25.T).transform(Pxx_lfp_0_25.T)
######## the figure: #######
fig = plt.figure(figsize=(20, 10))
ax1 = sns.heatmap(b,robust=True,xticklabels=1000, yticklabels=10,cbar=False)
ax1.invert_yaxis()
sns.set_style("white",{'axes.linewidth' : 0.01})
#sns.xkcd_rgb["pale red"]
ax2 = ax1.twinx()
ax2 = sns.tsplot(data=stats.zscore(np.trapz(Pxx_lfp_0_25,axis=0)),value='Integrated LFP',color='green',linewidth=0.1)
#ax2.invert_yaxis()
ax2.yaxis.set_visible(False)
pos1 = ax1.get_position()
new_pos = pos1
new_pos.y0 -= 0.1 #new_pos.y0
ax2.set_position(new_pos)
#ax3 = ax1.twinx()
#ax3 = sns.tsplot(data=Pxx_emg_0_100_intgr,value='EMG',color='blue',linewidth=0.1)
#ax3.yaxis.set_visible(False)
sns.despine()
save_name = 'all_exp'
fig.savefig((save_name+".pdf"))
if __name__ == "__main__":
trace_files = []
for file in os.listdir(os.getcwd()):
if file.endswith(".npz"):
trace_files.append(file)
sort_nicely(trace_files)
print 'NPZ files: ', trace_files
windowed_data,power_data,freqs,t = concat_data(trace_files)
plot_spec(power_data,freqs,t)