Skip to content
This repository has been archived by the owner on Oct 26, 2024. It is now read-only.

Latest commit

 

History

History
136 lines (121 loc) · 3.86 KB

data.md

File metadata and controls

136 lines (121 loc) · 3.86 KB

Data Collection

This document serves as a collection of SQL queries that have been created (or need to be created) for us to fetch the data needed to generate HCB Wrapped.

  • Spending by location

    • By-user
    • By-org
    • Overall
    SELECT
      CASE
        WHEN coalesce(rst.stripe_transaction->'merchant_data'->>'state', '') <> '' THEN
          trim(upper(
              concat_ws(' - ',
                  coalesce(rst.stripe_transaction->'merchant_data'->>'country', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'state', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'postal_code', '')
              )
          ))
        ELSE
          trim(upper(
              concat_ws(' - ',
                  coalesce(rst.stripe_transaction->'merchant_data'->>'country', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'postal_code', '')
              )
          ))
      END as location,
      (sum(amount_cents) / 100) * -1 as dollars_spent
    FROM "raw_stripe_transactions" rst
    WHERE
    EXTRACT(YEAR FROM date_posted) = 2023
    GROUP BY
      CASE
        WHEN coalesce(rst.stripe_transaction->'merchant_data'->>'state', '') <> '' THEN
          trim(upper(
              concat_ws(' - ',
                  coalesce(rst.stripe_transaction->'merchant_data'->>'country', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'state', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'postal_code', '')
              )
          ))
        ELSE
          trim(upper(
              concat_ws(' - ',
                  coalesce(rst.stripe_transaction->'merchant_data'->>'country', ''),
                  coalesce(rst.stripe_transaction->'merchant_data'->>'postal_code', '')
              )
          ))
      END
    ORDER BY sum(amount_cents) * -1 DESC
    LIMIT 4000;
  • Spending by merchant

    • By-user
    • By-org
    • Overall
    -- forked from gary's old code, thanks gary!
    
    SELECT
    
    case
        when rst.stripe_transaction->'merchant_data'->>'name' similar to '(SQ|GOOGLE|TST|RAZ|INF|PayUp|IN|INT|\*)%'
            then trim(upper(rst.stripe_transaction->'merchant_data'->>'name'))
        else trim(upper(split_part(rst.stripe_transaction->'merchant_data'->>'name', '*', 1)))
    end
    as merchant_name,
        (sum(amount_cents) / 100) * -1 as dollars_spent
    
    FROM "raw_stripe_transactions" rst
    WHERE
    EXTRACT(YEAR FROM date_posted) = 2023
    GROUP BY
    
    case
        when rst.stripe_transaction->'merchant_data'->>'name' similar to '(SQ|GOOGLE|TST|RAZ|INF|PayUp|IN|INT|\*)%'
            then trim(upper(rst.stripe_transaction->'merchant_data'->>'name'))
        else trim(upper(split_part(rst.stripe_transaction->'merchant_data'->>'name', '*', 1)))
    end
    order by sum(amount_cents) * -1 desc
    LIMIT 100
  • Spending by category

    • By-user
    • By-org
    • Overall
    SELECT
    
    trim(upper(split_part(rst.stripe_transaction->'merchant_data'->>'category', '*', 1)))
    as merchant_name,
        (sum(amount_cents) / 100) * -1 as dollars_spent
    
    FROM "raw_stripe_transactions" rst
    WHERE
    EXTRACT(YEAR FROM date_posted) = 2023
    GROUP BY
    
    trim(upper(split_part(rst.stripe_transaction->'merchant_data'->>'category', '*', 1)))
    order by sum(amount_cents) * -1 desc
    LIMIT 10000
  • Spending by date

    • By-user
    • By-org
    • Overall
    SELECT
    date_posted, (sum(amount_cents) / 100) * -1 as dollars_spent
    FROM "raw_stripe_transactions" rst
    WHERE
    EXTRACT(YEAR FROM date_posted) = 2023
    GROUP BY
    date_posted
    order by date_posted desc
    LIMIT 10000
  • A user's average receipt upload time

    SELECT r.user_id,
    AVG(EXTRACT(EPOCH FROM (r.created_at - h.created_at))) / (24 * 60 * 60) AS days
    FROM receipts r
    JOIN hcb_codes h ON r.receiptable_id = h.id
    WHERE EXTRACT(YEAR FROM r.created_at) = 2023
    AND r.receiptable_type = 'HcbCode'
    GROUP BY
    r.user_id
    order by avg(r.created_at - h.created_at) desc
    LIMIT 10000