-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluation.py
executable file
·128 lines (101 loc) · 4.23 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import cv2
import argparse
import numpy as np
import types
import copyreg
from multiprocessing import Pool
CATEGORY_LIST = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor']
def _pickle_method(m):
if m.im_self is None:
return getattr, (m.im_class, m.im_func.func_name)
else:
return getattr, (m.im_self, m.im_func.func_name)
copyreg.pickle(types.MethodType, _pickle_method)
class ConfusionMatrix(object):
def __init__(self, nclass, classes=None):
self.nclass = nclass
self.classes = classes
self.M = np.zeros((nclass, nclass))
def add(self, gt, pred):
assert (np.max(pred) <= self.nclass)
assert (len(gt) == len(pred))
for i in range(len(gt)):
if not gt[i] == 255:
self.M[gt[i], pred[i]] += 1.0
def addM(self, matrix):
assert (matrix.shape == self.M.shape)
self.M += matrix
def __str__(self):
pass
def recall(self):
recall = 0.0
for i in range(self.nclass):
recall += self.M[i, i] / np.sum(self.M[:, i])
return recall / self.nclass
def accuracy(self):
accuracy = 0.0
for i in range(self.nclass):
accuracy += self.M[i, i] / np.sum(self.M[i, :])
return accuracy / self.nclass
def jaccard(self):
jaccard = 0.0
jaccard_perclass = []
for i in range(self.nclass):
if not self.M[i, i] == 0:
jaccard_perclass.append(self.M[i, i] / (np.sum(self.M[i, :]) + np.sum(self.M[:, i]) - self.M[i, i]))
return np.sum(jaccard_perclass) / len(jaccard_perclass), jaccard_perclass, self.M
def generateM(self, item):
gt, pred = item
m = np.zeros((self.nclass, self.nclass))
assert (len(gt) == len(pred))
for i in range(len(gt)):
if gt[i] < self.nclass:
m[gt[i], pred[i]] += 1.0
return m
def parse_args():
parser = argparse.ArgumentParser(description='evaluate segmentation result')
parser.add_argument('--pred-path', default=None, type=str, help='prediction result dir')
parser.add_argument('--class-num', default=21, type=int, help='class number include bg')
parser.add_argument('--gt-path', default='', type=str, help='ground truth dir')
parser.add_argument('--image-list', default='datalist/PascalVOC/val_id.txt', type=str, help='test ids file path')
parser.add_argument('--save-name', default='result/test_id.txt', type=str, help='result file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print('Evaluation is executed.')
m_list = []
data_list = []
image_list = [i.strip() for i in open(args.image_list) if not i.strip() == '']
for index, img_id in enumerate(image_list):
pred_img_path = os.path.join(args.pred_path, img_id + '.png')
gt_img_path = os.path.join(args.gt_path, img_id + '.png')
pred = cv2.imread(pred_img_path, cv2.IMREAD_GRAYSCALE)
gt = cv2.imread(gt_img_path, cv2.IMREAD_GRAYSCALE)
data_list.append([gt.flatten(), pred.flatten()])
print('All images are loaded')
ConfM = ConfusionMatrix(args.class_num)
f = ConfM.generateM
pool = Pool()
m_list = pool.map(f, data_list)
pool.close()
pool.join()
for m in m_list:
ConfM.addM(m)
aveJ, j_list, M = ConfM.jaccard()
with open(args.save_name, 'w') as f:
print('{0:12s}: {1:.4f}'.format('meanIOU', aveJ * 100))
print('=' * 21)
f.write('{0:12s}: {1:.4f}\n'.format('meanIOU', aveJ * 100))
f.write('=' * 21)
f.write('\n')
for i, j in enumerate(j_list):
print("{0:12s}: {1:.4f}".format(CATEGORY_LIST[i], j * 100))
f.write("{0:12s}: {1:.4f}\n".format(CATEGORY_LIST[i], j * 100))
f.write('Raw Result:\n')
f.write('meanIOU: ' + str(aveJ) + '\n')
f.write(str(j_list) + '\n')
f.write(str(M) + '\n')