-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathlongestIncreasingSubsequence.cpp
148 lines (139 loc) · 4.71 KB
/
longestIncreasingSubsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// Source : https://leetcode.com/problems/longest-increasing-subsequence/
// Author : Calinescu Valentin, Hao Chen
// Date : 2015-11-06
/***************************************************************************************
*
* Given an unsorted array of integers, find the length of longest increasing
* subsequence.
*
* For example,
* Given [10, 9, 2, 5, 3, 7, 101, 18],
* The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4.
* Note that there may be more than one LIS combination, it is only necessary for yo
* to return the length.
*
* Your algorithm should run in O(n2) complexity.
*
* Follow up: Could you improve it to O(n log n) time complexity?
*
* Credits:
* Special thanks to @pbrother for adding this problem and creating all test cases.
*
***************************************************************************************/
// O(n^2) - dynamic programming
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int len = nums.size();
int maxLen = 0;
vector<int> dp(len, 1);
for (int i=0; i<len; i++) {
for(int j=0; j<i; j++) {
if ( nums[j] < nums[i] ) {
dp[i] = max(dp[i], dp[j] + 1);
}
}
maxLen = max(maxLen, dp[i]);
}
return maxLen;
}
};
class Solution {
public:
/*
* Solution 1 - O(N^2)
* =========
*
* LIS - longest increasing subsequence
*
* We iterate through the elements to find the LIS that ends with the current element.
* To do that we need to look at all of the previous elements and find one smaller than
* the current one so that we can add the current one to the sequence terminated in the
* smaller one. The length of the LIS ending in the current element is the length of the
* LIS ending in the smaller one + 1. To find the maximum current LIS we need to use the
* maximum previous LIS that satisfies the conditions.
*
*/
vector <int> longest_LIS;
int lengthOfLIS(vector<int>& nums) {
int answer = 0;
if(nums.size())
{
longest_LIS.push_back(1);
answer = 1;
for(int i = 1; i < nums.size(); i++)
{
int maximum = 1;
for(int j = 0; j < longest_LIS.size(); j++)
if(nums[i] > nums[j])
maximum = max(maximum, longest_LIS[j] + 1);
longest_LIS.push_back(maximum);
answer = max(maximum, answer);
}
}
return answer;
}
/*
* Solution 2 - O(N * logN)
* =========
*
* LIS - longest increasing subsequence
*
* We iterate through the elements to find the position of the current element in the
* current LIS. After we find its position we change the LIS replacing the next biggest
* element with the current one or increase the size of the sequence if the current element
* is bigger than the biggest one. This way we keep the LIS with the smallest possible
* elements. By keeping any other LIS we can encounter an element that could have been added
* to the LIS with the smallest elements, but can't be added to the current one, therefore
* missing the solution.
*
*/
vector <int> longest_subsequence; // the LIS
vector <int> nums;
int binary_search(int number)
{
int start = 0, end = longest_subsequence.size() - 1;
if(start == end)
{
if(number > longest_subsequence[start])
return start + 1;
else
return start;
}
while(start < end)
{
if(start == end - 1)
{
if(number > longest_subsequence[start] && number <= longest_subsequence[end])
return end;
else if(number <= longest_subsequence[start])
return start;
else
return end + 1;
}
int middle = (start + end + 1) / 2;
if(longest_subsequence[middle] < number)
start = middle;
else
end = middle;
}
}
int lengthOfLIS(vector<int>& nums) {
int answer = 0;
if(nums.size())
{
answer = 1;
longest_subsequence.push_back(nums[0]);
for(int i = 1; i < nums.size(); i++)
{
int position = binary_search(nums[i]);
if(position == longest_subsequence.size())
longest_subsequence.push_back(nums[i]);
else
longest_subsequence[position] = nums[i];
answer = max(answer, position + 1);
}
}
return answer;
}
};