-
Notifications
You must be signed in to change notification settings - Fork 221
/
Copy pathmodel.py
130 lines (89 loc) · 4.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Basic Code is taken from https://github.com/ckmarkoh/GAN-tensorflow
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from scipy.misc import imsave
import os
import shutil
from PIL import Image
import time
import random
from layers import *
img_height = 256
img_width = 256
img_layer = 3
img_size = img_height * img_width
batch_size = 1
pool_size = 50
ngf = 32
ndf = 64
def build_resnet_block(inputres, dim, name="resnet"):
with tf.variable_scope(name):
out_res = tf.pad(inputres, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
out_res = general_conv2d(out_res, dim, 3, 3, 1, 1, 0.02, "VALID","c1")
out_res = tf.pad(out_res, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
out_res = general_conv2d(out_res, dim, 3, 3, 1, 1, 0.02, "VALID","c2",do_relu=False)
return tf.nn.relu(out_res + inputres)
def build_generator_resnet_6blocks(inputgen, name="generator"):
with tf.variable_scope(name):
f = 7
ks = 3
pad_input = tf.pad(inputgen,[[0, 0], [ks, ks], [ks, ks], [0, 0]], "REFLECT")
o_c1 = general_conv2d(pad_input, ngf, f, f, 1, 1, 0.02,name="c1")
o_c2 = general_conv2d(o_c1, ngf*2, ks, ks, 2, 2, 0.02,"SAME","c2")
o_c3 = general_conv2d(o_c2, ngf*4, ks, ks, 2, 2, 0.02,"SAME","c3")
o_r1 = build_resnet_block(o_c3, ngf*4, "r1")
o_r2 = build_resnet_block(o_r1, ngf*4, "r2")
o_r3 = build_resnet_block(o_r2, ngf*4, "r3")
o_r4 = build_resnet_block(o_r3, ngf*4, "r4")
o_r5 = build_resnet_block(o_r4, ngf*4, "r5")
o_r6 = build_resnet_block(o_r5, ngf*4, "r6")
o_c4 = general_deconv2d(o_r6, [batch_size,64,64,ngf*2], ngf*2, ks, ks, 2, 2, 0.02,"SAME","c4")
o_c5 = general_deconv2d(o_c4, [batch_size,128,128,ngf], ngf, ks, ks, 2, 2, 0.02,"SAME","c5")
o_c5_pad = tf.pad(o_c5,[[0, 0], [ks, ks], [ks, ks], [0, 0]], "REFLECT")
o_c6 = general_conv2d(o_c5_pad, img_layer, f, f, 1, 1, 0.02,"VALID","c6",do_relu=False)
# Adding the tanh layer
out_gen = tf.nn.tanh(o_c6,"t1")
return out_gen
def build_generator_resnet_9blocks(inputgen, name="generator"):
with tf.variable_scope(name):
f = 7
ks = 3
pad_input = tf.pad(inputgen,[[0, 0], [ks, ks], [ks, ks], [0, 0]], "REFLECT")
o_c1 = general_conv2d(pad_input, ngf, f, f, 1, 1, 0.02,name="c1")
o_c2 = general_conv2d(o_c1, ngf*2, ks, ks, 2, 2, 0.02,"SAME","c2")
o_c3 = general_conv2d(o_c2, ngf*4, ks, ks, 2, 2, 0.02,"SAME","c3")
o_r1 = build_resnet_block(o_c3, ngf*4, "r1")
o_r2 = build_resnet_block(o_r1, ngf*4, "r2")
o_r3 = build_resnet_block(o_r2, ngf*4, "r3")
o_r4 = build_resnet_block(o_r3, ngf*4, "r4")
o_r5 = build_resnet_block(o_r4, ngf*4, "r5")
o_r6 = build_resnet_block(o_r5, ngf*4, "r6")
o_r7 = build_resnet_block(o_r6, ngf*4, "r7")
o_r8 = build_resnet_block(o_r7, ngf*4, "r8")
o_r9 = build_resnet_block(o_r8, ngf*4, "r9")
o_c4 = general_deconv2d(o_r9, [batch_size,128,128,ngf*2], ngf*2, ks, ks, 2, 2, 0.02,"SAME","c4")
o_c5 = general_deconv2d(o_c4, [batch_size,256,256,ngf], ngf, ks, ks, 2, 2, 0.02,"SAME","c5")
o_c6 = general_conv2d(o_c5, img_layer, f, f, 1, 1, 0.02,"SAME","c6",do_relu=False)
# Adding the tanh layer
out_gen = tf.nn.tanh(o_c6,"t1")
return out_gen
def build_gen_discriminator(inputdisc, name="discriminator"):
with tf.variable_scope(name):
f = 4
o_c1 = general_conv2d(inputdisc, ndf, f, f, 2, 2, 0.02, "SAME", "c1", do_norm=False, relufactor=0.2)
o_c2 = general_conv2d(o_c1, ndf*2, f, f, 2, 2, 0.02, "SAME", "c2", relufactor=0.2)
o_c3 = general_conv2d(o_c2, ndf*4, f, f, 2, 2, 0.02, "SAME", "c3", relufactor=0.2)
o_c4 = general_conv2d(o_c3, ndf*8, f, f, 1, 1, 0.02, "SAME", "c4",relufactor=0.2)
o_c5 = general_conv2d(o_c4, 1, f, f, 1, 1, 0.02, "SAME", "c5",do_norm=False,do_relu=False)
return o_c5
def patch_discriminator(inputdisc, name="discriminator"):
with tf.variable_scope(name):
f= 4
patch_input = tf.random_crop(inputdisc,[1,70,70,3])
o_c1 = general_conv2d(patch_input, ndf, f, f, 2, 2, 0.02, "SAME", "c1", do_norm="False", relufactor=0.2)
o_c2 = general_conv2d(o_c1, ndf*2, f, f, 2, 2, 0.02, "SAME", "c2", relufactor=0.2)
o_c3 = general_conv2d(o_c2, ndf*4, f, f, 2, 2, 0.02, "SAME", "c3", relufactor=0.2)
o_c4 = general_conv2d(o_c3, ndf*8, f, f, 2, 2, 0.02, "SAME", "c4", relufactor=0.2)
o_c5 = general_conv2d(o_c4, 1, f, f, 1, 1, 0.02, "SAME", "c5",do_norm=False,do_relu=False)
return o_c5