-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdata_clean.py
75 lines (59 loc) · 2.68 KB
/
data_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 9 20:41:26 2018
@author: pegasus
"""
import pandas as pd
import numpy as np
import csv
#load csv files
market_price = pd.read_csv('data/market.csv')
standard_price = pd.read_csv('data/standard.csv')
coc = pd.read_csv('data/cost-of-cultivation.csv')
#list of considered crops
products = ["groundnut", "paddy", "rice", "wheat", "barley",
"jowar", "bajra", "maize", "ragi", "gram", "tur",
"mustard", "soyabean", "sunflower",
"cotton", "jute", "sugarcane"]
market_edited = market_price[market_price['commodity'].str.lower().isin([x.lower() for x in products])]
#take mean of all varieties of one crop
grouped_market = market_edited.groupby(['state', 'commodity']).agg(['mean']).reset_index()
grouped_market.columns = ["".join(x) for x in grouped_market.columns.ravel()]
#convert price in quintal to price in kg
grouped_market['modal_pricemean'] = grouped_market['modal_pricemean'].apply(lambda x: float(x)/100)
standard_price['price'] = standard_price['price'].apply(lambda x: float(x)/100)
#convert to dictionary of crop to profit or cost
std_prices = dict(zip(standard_price.standard, standard_price.price))
coc_dict = dict(zip(coc.crop, coc.cost))
#state vs crop matrix
yield_mat = pd.read_csv('data/state-crop-yield.csv')
#state and crop lists
states = yield_mat['state']
crops = list(yield_mat.columns)[1:]
yield_np_mat = yield_mat.as_matrix()
prediction_table = list()
prediction_table.append(["state", "crop", "profit"])
for i in range(0,yield_np_mat.shape[0]-1):
for j in range(1,yield_np_mat.shape[1]):
if(yield_np_mat[i][j]!=0.0):
#if yielding in current state then calculate profit
rs_per_kg = grouped_market[(grouped_market['state']==states[i]) & (grouped_market['commodity'] == crops[j-1])]['modal_pricemean']
if(rs_per_kg.shape[0]==1):
#use market price data
diff = ((yield_np_mat[i][j]) * rs_per_kg.values[0]) - coc_dict[str(crops[j-1].lower())]
val = diff if diff>0.0 else 1.0
else:
#use approximated standard price
diff = ((yield_np_mat[i][j]) * std_prices[str(crops[j-1].lower())]) - coc_dict[str(crops[j-1].lower())]
val = diff if diff>0.0 else 1.0
#append all results to a table
prediction_table.append([states[i], crops[j-1], val])
else:
#states which cant produce the given crop
print("**", states[i],crops[j-1])
prediction_table.append([states[i], crops[j-1], -1])
#print(prediction_table)
#save to csv
with open("data/state-profit-data.csv", "wb") as f:
writer = csv.writer(f)
writer.writerows(prediction_table)