-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
271 lines (225 loc) · 9.64 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Written by Håvard Thom
"""
Unified detection system for training, evaluating and detecting with detection \
method, model and dataset of choice.
"""
from __future__ import print_function
import _init_paths
import argparse
import os.path as osp
import yaml
import sys
import pprint
import glob
from caffe.proto import caffe_pb2 as cpb2
from google.protobuf import text_format
from fast_rcnn_utils.timer import Timer
from datasets.factory import add_imdb, get_imdb
from configs.config import cfg, cfg_from_file, cfg_from_list
from utils import make_if_not_exist, check_if_exist, sec_2_hour_min_sec
from utils import get_classnames_from_labelmap, procedure_complete_print
from faster_rcnn import train_faster_rcnn, evaluate_faster_rcnn, detect_faster_rcnn
from ssd import train_ssd, evaluate_ssd, detect_ssd
from ssd import create_ssd_model_definition
from yolov2 import train_yolov2, evaluate_yolov2, detect_yolov2
from yolov2 import create_yolov2_model_definition, create_yolov2_names_data_config
def parse_args():
"""Parse input arguments"""
parser = argparse.ArgumentParser(
description='Unified detection system for training, evaluating and \
detecting with framework and model of choice',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--method',
help='Name of detection method to use for training',
default='faster_rcnn', type=str)
parser.add_argument('--model',
help='Name of model to use for training',
default='VGG16', type=str)
parser.add_argument('--dataset',
help='Name of dataset to use for training',
default='baitcam', type=str)
parser.add_argument('--cfg',
help='A config file to use for training', type=str)
parser.add_argument('--gpu',
help='GPU device id to use', default=0, type=int)
parser.add_argument('--nopretrained',
help='Train without pretrained imagenet model',
action='store_true', default=False)
parser.add_argument('--max_iters',
help='Number of iterations to train',
default=100000, type=int)
parser.add_argument('--eval',
help='Evaluate a model from output directory',
action='store_true', default=False)
# parser.add_argument('--eval_set',
# help='Which imageset to evaluate ',
# default='val', type=str)
parser.add_argument('--detect',
help='Detect on images using a model from output directory',
action='store_true', default=False)
parser.add_argument('--output_dir',
help='A output directory which contains a model for evaluation or \
detection (e.g. output/baitcam/ssd/VGG16_reduced)', type=str)
parser.add_argument('--image_dir',
help='A directory which contains images for detection', type=str)
parser.add_argument("--conf_thresh",
help = "Only get detections with confidence score higher than the threshold.",
default=0.005, type=float)
parser.add_argument("--nms_thresh",
help = "Detections with IoU overlap higher than the threshold will \
be suppressed by Non-Maximum Suppression.",
default=0.45, type=float)
args = parser.parse_args()
if args.eval and args.output_dir is None:
parser.error("--eval requires --output_dir.")
if args.detect and args.output_dir is None:
parser.error("--detect requires --output_dir.")
if args.detect and args.image_dir is None:
parser.error("--detect requires --image_dir.")
return args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
method_name = args.method
model_name = args.model
dataset_name = args.dataset
cfg_file = args.cfg
gpu_id = args.gpu
no_pretrained = args.nopretrained
max_iters = args.max_iters
evaluate = args.eval
# eval_set = args.eval_set
detect = args.detect
output_dir = args.output_dir
image_dir = args.image_dir
conf_thresh = args.conf_thresh
nms_thresh = args.nms_thresh
_t = Timer()
if not evaluate and not detect:
if cfg_file == None:
cfg_file = osp.join('configs', method_name, 'default.yml')
print('No config file given, '
'using default config: {:s}'.format(cfg_file))
check_if_exist('Config', cfg_file)
extra_cfg = ('METHOD_NAME {:s} MODEL_NAME {:s} '
'DATASET_NAME {:s} GPU_ID {:d}'.format(method_name,
model_name, dataset_name, gpu_id))
set_cfgs = extra_cfg.split()
# Update config
cfg_from_file(cfg_file)
cfg_from_list(set_cfgs)
# Set and create output dir
cfg.OUTPUT_DIR = osp.join(cfg.OUTPUT_DIR, cfg.DATASET_NAME, cfg.METHOD_NAME, cfg.MODEL_NAME)
make_if_not_exist(cfg.OUTPUT_DIR)
# Get classes from label map
label_map_file = osp.join(cfg.DATA_DIR, cfg.DATASET_NAME,
'{}_labelmap.prototxt'.format(cfg.DATASET_NAME))
cfg.CLASSES = get_classnames_from_labelmap(label_map_file)
cfg.NUM_CLASSES = len(cfg.CLASSES)
# Dump full config to output dir
dst = osp.join(cfg.OUTPUT_DIR, 'config.yml')
with open(dst, 'w') as f:
yaml.dump(cfg, f, default_flow_style=False)
else:
# Get config from given output directory
cfg_file = osp.join(output_dir, 'config.yml')
check_if_exist('Config', cfg_file)
extra_cfg = 'GPU_ID {:d}'.format(gpu_id)
set_cfgs = extra_cfg.split()
# Update config
cfg_from_file(cfg_file)
cfg_from_list(set_cfgs)
cfg.OUTPUT_DIR = osp.abspath(output_dir)
print('Using config:')
pprint.pprint(cfg)
# Add image database for evaluation (and training faster_rcnn)
add_imdb(cfg.DATASET_NAME, ['train', 'val', 'test'])
# Get image paths for detection
if detect:
image_dir = osp.abspath(image_dir)
extensions = ['*.png', '*.jpg', '*.JPEG', '*.JPG']
image_paths = []
for ext in extensions:
image_paths.extend(glob.glob(osp.join(image_dir, ext)))
result_file = image_dir + '_detections.txt'
# Set imdb and evaluate
# results_dir = osp.join(cfg.OUTPUT_DIR, 'results')
# imdb_name = '{:s}_val'.format(cfg.DATASET_NAME)
# imdb = get_imdb(imdb_name)
# imdb._do_pascal_voc_eval(results_dir)
#
# sys.exit()
if cfg.METHOD_NAME == 'faster_rcnn':
if cfg.MODEL_NAME != 'VGG16' and \
cfg.MODEL_NAME != 'ResNet101_bn-scale-merged' and \
cfg.MODEL_NAME != 'ResNet50' and \
cfg.MODEL_NAME != 'VGG_CNN_M_1024' and \
cfg.MODEL_NAME != 'ZF':
print('Faster R-CNN detection method does not currently support model: {:s}'
' (supported models: VGG16, ResNet101_bn-scale-merged, '
'ResNet50, VGG_CNN_M_1024 and ZF).'.format(cfg.MODEL_NAME))
sys.exit()
if not evaluate and not detect:
_t.tic()
train_faster_rcnn(no_pretrained, max_iters)
_t.toc()
procedure_complete_print('Training', _t.diff, cfg.OUTPUT_DIR, log=True)
if not detect: # Evaluate directly after training
_t.tic()
evaluate_faster_rcnn(conf_thresh, nms_thresh)
_t.toc()
procedure_complete_print('Evaluation', _t.diff, cfg.OUTPUT_DIR)
else:
_t.tic()
detect_faster_rcnn(image_paths, result_file, conf_thresh, nms_thresh)
_t.toc()
procedure_complete_print('Detection', _t.diff, result_file)
elif cfg.METHOD_NAME == 'ssd':
if cfg.MODEL_NAME != 'VGG16_reduced':
print('SSD detection method does not currently support model: {:s}'
' (supported models: VGG16_reduced).'.format(cfg.MODEL_NAME))
sys.exit()
create_ssd_model_definition(max_iters, conf_thresh, nms_thresh)
if not evaluate and not detect:
_t.tic()
train_ssd(no_pretrained)
_t.toc()
procedure_complete_print('Training', _t.diff, cfg.OUTPUT_DIR, log=True)
if not detect: # Evaluate directly after training
_t.tic()
evaluate_ssd()
_t.toc()
procedure_complete_print('Evaluation', _t.diff, cfg.OUTPUT_DIR)
else:
_t.tic()
detect_ssd(image_paths, result_file, conf_thresh)
_t.toc()
procedure_complete_print('Detection', _t.diff, result_file)
elif cfg.METHOD_NAME == 'yolov2':
if cfg.MODEL_NAME != 'Darknet19':
print('YOLOv2 detection method does not currently support model: '
'{:s} (supported models: Darknet19).'.format(cfg.MODEL_NAME))
sys.exit()
create_yolov2_names_data_config()
if not evaluate and not detect:
create_yolov2_model_definition(max_iters)
_t.tic()
train_yolov2(no_pretrained)
_t.toc()
procedure_complete_print('Training', _t.diff, cfg.OUTPUT_DIR, log=True)
if not detect: # Evaluate directly after training
_t.tic()
evaluate_yolov2(conf_thresh, nms_thresh)
_t.toc()
procedure_complete_print('Evaluation', _t.diff, cfg.OUTPUT_DIR)
else:
_t.tic()
detect_yolov2(image_paths, result_file, conf_thresh, nms_thresh)
_t.toc()
procedure_complete_print('Detection', _t.diff, result_file)
else:
print('Detection method {} not supported'.format(cfg.METHOD_NAME))
sys.exit()