-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrimbox.ino
700 lines (635 loc) · 17.8 KB
/
trimbox.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/* Arduino code for my (many) button boxes.
* Copyright 2024 Harris Enniss. Licensed under the GNU GPL Version 3.
*
* This encorporates bits of Ben Buxton's rotary handler, available at https://github.com/buxtronix/arduino/tree/master/libraries/Rotary
*
*
*/
#include <stdint.h>
#include <stdarg.h>
#include <Joystick.h>
#include <Wire.h>
// If >0, output debug info to Serial, and do not act as a joystick (trying to do so seems to interfere
// with the serial monitor)
#define DEBUG 0
#define DEBUG_WINDOWS (DEBUG & 0x2)
#define DEBUG_MATRIX (DEBUG & 0x4)
#define DEBUG_TIMING (DEBUG & 0x8)
// ADS1115 specific codes.
// Assuming ADDR wired to GND... adjust as needed.
#define ADDR 0b1001000
#define REG_CONV 0b00
#define REG_CONFIG 0b01
// This determines how many bits to discard from analog axes. This should be at least 1
// (ADS1115 supports only 15 bits in absolute mode), but in practice, I find throwing
// 3 bits out (13 bit resolution) is necessary to de-noise the axes on my device.
#define WINDOW_SIZE 3
#define WINDOW_H (WINDOW_SIZE ? (0b1 << (WINDOW_SIZE - 1)) : 0)
#define WINDOW_L (WINDOW_SIZE ? (-WINDOW_H + 1) : 0)
// Matrix specific defines.
#define MAT_W 0x3
#define MAT_H 0x3
// in hz
#define SAMPLE_FREQ 50
#define SAMPLE_PERIOD_MS (1000/SAMPLE_FREQ)
// Normally we don't send joystick updates unless something changes, but if >0, send additional
// updates ever COLD_UPDATE_MS miliseconds.
#define COLD_UPDATE_MS 1000
#define COLD_UPDATE_N (COLD_UPDATE_MS / SAMPLE_PERIOD_MS)
#define COLD_UPDATE (COLD_UPDATE_PERIOD_MS > 0)
// Forward Declarations.
// Wouldn't normally be necessary, but arduino's IDE seems to sometimes insert these in the wrong place.
typedef struct {
// addr: 7 bit i2c address
// mask: 4 bit mask determining which axes (A0-A3) should be read.
uint8_t addr, mask;
uint16_t config;
// Raw state of analog reads.
int16_t raw[4];
// Smoothed state of analog reads.
int16_t cur[4];
} ads1115_state;
typedef struct {
uint8_t rpins[MAT_W], wpins[MAT_H];
uint8_t codes[MAT_H][MAT_W];
} matrix_pins_t;
typedef struct {
uint8_t s[MAT_H * MAT_W];
} matrix_state_t;
void dprintf(const char *format, ...);
uint8_t initAdc(ads1115_state *adc);
uint8_t readConfig(ads1115_state *adc);
uint8_t writeConfig(ads1115_state *adc, uint16_t config);
// Split the config word on sections into a null-terminated string.
const char* bitConfigz(const ads1115_state *adc);
// Parse the config word into a null-terminated string.
const char* humanConfigz(const ads1115_state *adc);
uint8_t checkConversionReady(ads1115_state *adc);
uint8_t readAdcI(ads1115_state *adc, uint8_t idx);
uint8_t readAdc(ads1115_state *adc);
// Compute the new axis value from the previous value, and the raw read.
uint16_t moveWindow(uint16_t prev, uint16_t next);
uint8_t initMatrix(const matrix_pins_t * pins, matrix_state_t * state);
uint8_t scanMatrix(const matrix_pins_t * pins, matrix_state_t * state, void (*cb)(uint8_t code, uint8_t change), uint8_t * changed);
void buttonChange(uint8_t code, uint8_t change);
void initJoystick();
Joystick_ joystick(JOYSTICK_DEFAULT_REPORT_ID, JOYSTICK_TYPE_JOYSTICK, 9, 0, true, true, true, true, false, false, false, false, false, false, false);
matrix_pins_t pins = {
// We'll write LOW to wpins. Fill these such that current can flow from rpins to wpins.
.rpins = {7, 8, 9},
.wpins = {4, 5, 6},
// If we fill .codes in the naive way:
// .codes = {
// {0, 1, 2},
// {3, 4, 5},
// {6, 7, 8},
// },
// we wind up with a confusing mapping of physical buttons to codes.
// To make sure they're in a sensible order, start with .codes as defined above.
// Flip through your buttons in an order that makes sense (e.g., top to bottom)
// and fill the p(x) line of the following table, in order:
// id(x): 012345678
// p(x): 581067432
// Write down the permutation p this defines:
// (0 5 7 4 6 3)(1 8 2)
// and apply the inverse of this permutation to the values in .codes
// to get a button code order that will be sequential on your hardware.
.codes = {
{3, 2, 8},
{6, 7, 0},
{4, 5, 1},
},
};
// Begin Definitions.
// Serial debugging IO
#define SERIAL_BUF_LEN 128
void dprintf(const char * format, ...) {
#if DEBUG
// Making this static so memory-exhaustion happens at compile time.
static char serial_buf[SERIAL_BUF_LEN];
va_list args;
va_start (args, format);
vsnprintf(serial_buf, SERIAL_BUF_LEN, format, args);
Serial.println(serial_buf);
va_end(args);
#else
#endif
}
// ADC section.
// half-nibble -> char
#define hntoc(n) \
( n & 0b100 ? (n & 0b010 ? (n & 0b001 ? '7' : '6') : (n & 0b001 ? '5' : '4') ) : (n & 0b010 ? (n & 0b001 ? '3' : '2') : (n & 0b001 ? '1' : '0') ))
// Loads the configuration presently on the device, setting adc->config
uint8_t readConfig(ads1115_state *adc) {
uint8_t err;
if (adc == NULL) {
dprintf("readConfig(): NULL pointer");
return 1;
}
// Transmit i2c address, register;
Wire.beginTransmission(adc->addr);
Wire.write(REG_CONFIG);
err = Wire.endTransmission(adc->addr);
if (err != 0) {
dprintf("Wire.endTransmission(): %d", err);
return err;
}
// Request 2 bytes, then read them or fail.
Wire.requestFrom(adc->addr, (uint8_t)2);
if (2 <= Wire.available()) {
adc->config = Wire.read();
adc->config <<= 8;
adc->config |= Wire.read();
}
else {
dprintf("readConfig(): wire not available.");
return 2;
}
return 0;
}
uint8_t writeConfig(ads1115_state *adc, uint16_t config) {
uint8_t err;
if (adc == NULL) {
dprintf("readConfig(): NULL pointer");
return 1;
}
Wire.beginTransmission(adc->addr);
Wire.write(REG_CONFIG);
Wire.write(0xff & (config >> 8));
Wire.write(0xff & (config >> 0));
err = Wire.endTransmission(adc->addr);
if (err != 0) {
dprintf("Wire.endTransmission(): couldn't write config: %d", err);
return err;
}
#if DEBUG
// This check is expensive; only do it in debug mode.
err = readConfig(adc);
if (err != 0) {
dprintf("writeConfig(): Unexpected failure checking result.");
return err;
}
// skip bit 15; it has unique R/W semantics.
if ((config & 0x7fff) != (adc->config & 0x7fff)) {
dprintf("writeConfig(): Mismatched result.");
dprintf("expected: %s", bitConfigz(config));
dprintf("got: %s", bitConfigz(adc->config));
}
#endif
adc->config = (config & 0x7fff);
}
// DEBUG only.
// Split the config word on sections into a null-terminated string.
const char* bitConfigz(uint16_t config) {
#if DEBUG
static char buf[26];
uint8_t wh = 0;
for (int8_t i = 15; i >= 0; --i) {
// post-increment, i.e. write to the vacated index value.
buf[wh++] = ((config >> i) & 0b1) ? '1' : '0';
// Don't increment.
buf[wh] = '\0';
switch (i) {
// Terminal bits of each section, from p18 of the ADS1115 datasheet.
case 15:
case 12:
case 9:
case 8:
case 5:
case 4:
case 3:
case 2:
buf[wh++] = ' ';
break;
case 0:
// Technically supurflous, but for clarity.
goto ret;
default:
// Technically supurflous, but for clarity.
continue;
}
}
ret:
return buf;
#else
return "";
#endif
}
// DEBUG only.
// Parse the config word into a null-terminated string.
const char* humanConfigz(uint16_t config) {
#if DEBUG
static char buf[26];
char scratch[16];
uint8_t wh = 0, val = 0, b = 0;
for (int8_t i = 15; i >= 0; --i) {
val <<= 1;
val |= ((config >> i) & 0b1);
switch (i) {
// Terminal bits of each section, from p18 of the ADS1115 datasheet.
case 15:
buf[wh++] = val ? 'I' : 'C';
goto done;
case 12:
if (val & 0b100) {
// Absolute
buf[wh++] = 'A';
buf[wh++] = hntoc(val & 0b011);
buf[wh++] = 'G';
}
else if (val) {
buf[wh++] = 'D';
buf[wh++] = hntoc((val & 0b011) - 1);
buf[wh++] = '3';
}
else {
buf[wh++] = 'D';
buf[wh++] = '0';
buf[wh++] = '1';
}
goto done;
case 9:
switch (val) {
case 0:
strncpy(buf + wh, "6.1", 3);
break;
case 1:
strncpy(buf + wh, "4.0", 3);
break;
case 2:
strncpy(buf + wh, "2.0", 3);
break;
case 3:
strncpy(buf + wh, "1.0", 3);
break;
case 4:
strncpy(buf + wh, "0.5", 3);
break;
default:
strncpy(buf + wh, "0.2", 3);
break;
}
wh += 3;
goto done;
case 8:
buf[wh++] = val ? 'D' : 'C';
goto done;
case 5:
switch (val) {
case 7:
strncpy(buf + wh, "860", 3);
break;
case 6:
strncpy(buf + wh, "475", 3);
break;
default:
itoa(8 << val, scratch, 10);
strncpy(buf + wh, scratch, 3);
break;
}
wh += 3;
goto done;
case 4:
buf[wh++] = val ? 'W' : 'T';
goto done;
case 3:
buf[wh++] = val ? 'H' : 'L';
goto done;
case 2:
buf[wh++] = val ? 'L' : 'N';
goto done;
case 0:
switch (val) {
case 3:
// Blank out comparator elements.
for (int8_t j = -6; j < 0; ++j) {
buf[wh + j] = ' ';
}
strncpy(buf + wh, "DD", 2);
break;
case 2:
strncpy(buf + wh, "Q4", 2);
break;
case 1:
strncpy(buf + wh, "Q2", 2);
break;
default:
strncpy(buf + wh, "Q1", 2);
break;
}
wh += 2;
goto ret;
default:
continue;
}
done:
buf[wh++] = ' ';
val = 0;
}
ret:
buf[wh] = '\0';
return buf;
#else
return "";
#endif
}
uint8_t initAdc(ads1115_state *adc) {
uint16_t config;
uint8_t err;
if (adc == NULL) {
dprintf("initAdc(): NULL pointer");
return 1;
}
// Don't bother configuring input mutex: that's set per-read.
// 4V gain single-shot 475SPS disable comparator
config = ((0b001 << 9) | (0b1 << 8) | (0b110 << 5) | (0b11 << 0));
writeConfig(adc, config);
}
uint8_t checkConversionReady(ads1115_state *adc, uint8_t *ready) {
uint8_t err;
err = readConfig(adc);
if (err != 0) {
return err;
}
// Necessary to shift this right so it fits in uint8_t
*ready = (adc->config >> 15) & 0b1;
return 0;
}
uint8_t readAdcI(ads1115_state *adc, uint8_t idx) {
uint16_t config;
uint8_t err;
#if DEBUG_TIMING
static uint8_t sample;
uint32_t start, end;
++sample;
#endif
if (adc == NULL) {
dprintf("readAdcI(): NULL pointer");
return 1;
}
// Clamp to 0-3
idx &= 0b11;
if (!((0b1 << idx) & adc->mask)) {
// Index is masked out.
return 0;
}
config = adc->config;
// Zero out mux config.
config &= ~(0b111 << 12);
// Absolute mode only.
config |= (0b1 << 14);
config |= (idx << 12);
// Request conversion
config |= (0b1 << 15);
err = writeConfig(adc, config);
if (err != 0) {
return err;
}
#if DEBUG_TIMING
if (sample % 200 == 1) {
start = millis();
dprintf("Started conversion");
}
#endif
uint8_t ready;
for (uint16_t i = 0;; ++i) {
// I'm not sure if this is actually a good approach...
// It's simpler and marginally slower to just use a fixed delay (e.g. 5ms)
// although this does at least have the virtue of getting us timing data
// to use to tune that delay. Consider ripping this out in the future.
err = checkConversionReady(adc, &ready);
if (err != 0) {
return err;
}
if (ready) {
#if DEBUG_TIMING
if (sample % 200 == 1) {
end = millis();
dprintf("Conversion ready after %d millis.", end - start);
}
#endif
break;
}
#if DEBUG_TIMING
if ((sample % 200 == 1) && (i % 4 == 2)) {
end = millis();
dprintf("Conversion not ready after %d millis.", end - start);
}
#endif
delay(1);
}
Wire.beginTransmission(adc->addr);
Wire.write(REG_CONV);
err = Wire.endTransmission(adc->addr);
if (err != 0) {
dprintf("Wire.endTransmission(): couldn't read conversion: %d", err);
return err;
}
Wire.requestFrom(adc->addr, byte(2));
if (2 <= Wire.available()) {
adc->raw[idx] = Wire.read();
adc->raw[idx] <<= 8;
adc->raw[idx] |= Wire.read();
}
else {
dprintf("readAdcI(): wire not available.");
return 2;
}
return 0;
}
uint8_t readAdc(ads1115_state *adc) {
uint8_t err;
if (adc == NULL) {
dprintf("readAdc(): NULL pointer");
return 1;
}
for (uint8_t i = 0; i < 4; ++i) {
err = readAdcI(adc, i);
if (err != 0) {
return err;
}
adc->cur[i] = moveWindow(adc->cur[i], adc->raw[i]);
}
return 0;
}
// The algorithm used here is designed to produce output that is a little "sticky", that is, it doesn't move
// on its own once the axis is parked. This is a good fit for set-and-forget inputs like trim wheels, as
// it helps avoid ghostly inputs. It's not appropriate for hands-on inputs like a joystick; a moving average
// would be more appropriate there.
// Essentially, think of an interval: [X-WINDOW_L, X+WINDOW_H].
// When we get a new read Y from the ADC, make the smallest possible update to X so that
// this interval overlaps Y. Then use X as the value the device reports.
uint16_t moveWindow(uint16_t prev, uint16_t next) {
uint16_t ret;
#if DEBUG_WINDOWS
static uint8_t ranFlag;
if (ranFlag == 0) {
ranFlag = 1;
dprintf("WINDOW_SIZE: %d, WINDOW_L: %d, WINDOW_H %d", WINDOW_SIZE, WINDOW_L, WINDOW_H);
}
#endif
// 0 == UINT16_MIN
// if prev isn't sitting against the low stop
// if the new value is definitely smaller.
if ((0 - WINDOW_L < prev) && (next < (prev + WINDOW_L))) {
ret = next - WINDOW_L;
#if DEBUG_WINDOWS
dprintf("Lower to %d", ret);
#endif
return ret;
}
// if prev isn't sitting against the high stop
// if the new value is difinitively larger
else if ((UINT16_MAX - WINDOW_H > prev) && (next > (prev + WINDOW_H))) {
ret = next - WINDOW_H;
#if DEBUG_WINDOWS
dprintf("Raise to %d", ret);
#endif
return ret;
}
else {
// prev falls into the pre-existing interval, so don't move it at all.
return prev;
}
}
// Axes
void initJoystick() {
#if DEBUG
#else
// autoSendState
joystick.begin(false);
joystick.setXAxisRange(INT16_MIN, INT16_MAX);
joystick.setYAxisRange(INT16_MIN, INT16_MAX);
joystick.setZAxisRange(INT16_MIN, INT16_MAX);
joystick.setRxAxisRange(INT16_MIN, INT16_MAX);
#endif
}
// Encoders
// TODO
// Button Matrix
matrix_state_t matrix_state;
uint8_t initMatrix(const matrix_pins_t * pins, matrix_state_t * state) {
if (pins == NULL) {
dprintf("initMatrix(): Null pointer.");
return 1;
}
for (uint8_t i = 0; i < sizeof(pins->wpins); ++i) {
pinMode(pins->wpins[i], OUTPUT);
}
for (uint8_t j = 0; j < sizeof(pins->rpins); ++j) {
pinMode(pins->rpins[j], INPUT_PULLUP);
}
for (uint8_t k = 0; k < sizeof(state->s); ++k) {
state->s[k] = HIGH;
}
dprintf("matrix ready");
return 0;
}
uint8_t scanMatrix(const matrix_pins_t * pins, matrix_state_t * state, void (*cb)(uint8_t code, uint8_t change), uint8_t *changed) {
uint8_t code, value;
if (pins == NULL) {
dprintf("initMatrix(): Null pointer.");
return 1;
}
for (uint8_t i = 0; i < sizeof(pins->wpins); ++i) {
digitalWrite(pins->wpins[i], LOW);
for (uint8_t j = 0; j < sizeof(pins->rpins); ++j) {
value = digitalRead(pins->rpins[j]);
code = pins->codes[i][j];
#if DEBUG_MATRIX
if (value == LOW) {
dprintf("%d -> %d LOW (button %d)", pins->wpins[i], pins->rpins[j], code);
}
#endif
if ( value != state->s[code]) {
(*cb)(code, value);
*changed = true;
state->s[code] = (uint8_t)value;
}
}
digitalWrite(pins->wpins[i], HIGH);
}
}
void buttonChange(uint8_t code, uint8_t change) {
dprintf("Button %d set to %s.", code, change == LOW ? "LOW" : "HIGH");
#if !DEBUG
joystick.setButton(code, change == LOW ? 1 : 0);
#endif
}
// Global state.
ads1115_state adc {.addr = ADDR, .mask = 0b1111};
// Entrypoints.
void setup() {
#if DEBUG
// Wait a little for the serial console to become available.
delay(4000);
#endif
uint8_t err;
dprintf("Preparing config...");
err = initAdc(&adc);
if (err != 0) {
return;
}
dprintf(bitConfigz(adc.config));
dprintf(humanConfigz(adc.config));
initJoystick();
initMatrix(&pins, &matrix_state);
dprintf("done");
}
void loop() {
static uint8_t changed;
static uint8_t counter;
uint8_t err;
#if DEBUG
static uint16_t last[4];
#endif
delay(SAMPLE_PERIOD_MS);
err = readAdc(&adc);
if (err != 0) {
err = readConfig(&adc);
if (err != 0) {
return;
}
// We'd like to see what config is set to, in this case...
dprintf(bitConfigz(adc.config));
dprintf(humanConfigz(adc.config));
}
for (uint8_t i = 0; i < 4; ++i) {
#if DEBUG
if (adc.cur[i] != last[i]) {
changed = true;
dprintf("A%d:%d", i, adc.cur[i]);
last[i] = adc.cur[i];
}
#else
switch (i) {
case 0:
joystick.setXAxis((int32_t)adc.cur[i]);
break;
case 1:
joystick.setYAxis((int32_t)adc.cur[i]);
break;
case 2:
joystick.setZAxis((int32_t)adc.cur[i]);
break;
case 3:
joystick.setRxAxis((int32_t)adc.cur[i]);
break;
default:
dprintf("Impossible joystick index %d.", i);
}
#endif
}
err = scanMatrix(&pins, &matrix_state, &buttonChange, &changed);
if (err != 0) {
#if DEBUG_MATRIX
dprintf("scanMatrix(): error: %d", err);
#endif
}
if (changed || !counter) {
dprintf("sendState()");
joystick.sendState();
changed = false;
}
counter = (counter + COLD_UPDATE_N - 1) % COLD_UPDATE_N;
}