-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathESP32SPISlave.h
677 lines (611 loc) · 27.2 KB
/
ESP32SPISlave.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#pragma once
#ifndef ESP32SPI_SLAVE_H
#define ESP32SPI_SLAVE_H
#include <Arduino.h>
#include <SPI.h>
#include <driver/spi_slave.h>
#include <vector>
#include <string>
#ifndef ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_BEGIN
#define ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_BEGIN \
namespace arduino { \
namespace esp32 { \
namespace spi { \
namespace slave {
#endif
#ifndef ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_END
#define ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_END \
} \
} \
} \
}
#endif
ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_BEGIN
static constexpr const char *TAG = "ESP32SPISlave";
static constexpr int SPI_SLAVE_TASK_STASCK_SIZE = 1024 * 2;
static constexpr int SPI_SLAVE_TASK_PRIORITY = 5;
static QueueHandle_t s_trans_queue_handle {NULL};
static constexpr int SEND_TRANS_QUEUE_TIMEOUT_TICKS = pdMS_TO_TICKS(5000);
static constexpr int RECV_TRANS_QUEUE_TIMEOUT_TICKS = pdMS_TO_TICKS(5000);
static QueueHandle_t s_trans_result_handle {NULL};
static constexpr int SEND_TRANS_RESULT_TIMEOUT_TICKS = pdMS_TO_TICKS(5000);
static constexpr int RECV_TRANS_RESULT_TIMEOUT_TICKS = 0;
static QueueHandle_t s_trans_error_handle {NULL};
static constexpr int SEND_TRANS_ERROR_TIMEOUT_TICKS = pdMS_TO_TICKS(5000);
static constexpr int RECV_TRANS_ERROR_TIMEOUT_TICKS = 0;
static QueueHandle_t s_in_flight_mailbox_handle {NULL};
using spi_slave_user_cb_t = std::function<void(spi_slave_transaction_t*, void*)>;
void spi_slave_post_setup_cb(spi_slave_transaction_t* trans);
void spi_slave_post_trans_cb(spi_slave_transaction_t* trans);
struct spi_slave_context_t
{
spi_slave_interface_config_t if_cfg {
.spics_io_num = SS,
.flags = 0,
.queue_size = 1,
.mode = SPI_MODE0,
.post_setup_cb = spi_slave_post_setup_cb,
.post_trans_cb = spi_slave_post_trans_cb,
};
spi_bus_config_t bus_cfg {
.mosi_io_num = MOSI, // union with data0_io_num
.miso_io_num = MISO, // union with data1_io_num
.sclk_io_num = SCK,
.data2_io_num = -1, // union with quadwp_io_num
.data3_io_num = -1, // union with quadhd_io_num
.data4_io_num = -1,
.data5_io_num = -1,
.data6_io_num = -1,
.data7_io_num = -1,
.max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE,
.flags = SPICOMMON_BUSFLAG_SLAVE,
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 1, 0)
.isr_cpu_id = INTR_CPU_ID_AUTO,
#elif ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 2, 0)
.isr_cpu_id = ESP_INTR_CPU_AFFINITY_AUTO,
#endif
.intr_flags = 0,
};
spi_host_device_t host {SPI2_HOST};
TaskHandle_t main_task_handle {NULL};
};
struct spi_transaction_context_t
{
spi_slave_transaction_t *trans;
size_t size;
TickType_t timeout_ticks;
};
struct spi_slave_cb_user_context_t
{
struct {
spi_slave_user_cb_t user_cb;
void *user_arg;
} post_setup;
struct {
spi_slave_user_cb_t user_cb;
void *user_arg;
} post_trans;
};
void IRAM_ATTR spi_slave_post_setup_cb(spi_slave_transaction_t* trans)
{
spi_slave_cb_user_context_t *user_ctx = static_cast<spi_slave_cb_user_context_t*>(trans->user);
if (user_ctx->post_setup.user_cb) {
user_ctx->post_setup.user_cb(trans, user_ctx->post_setup.user_arg);
}
}
void IRAM_ATTR spi_slave_post_trans_cb(spi_slave_transaction_t* trans)
{
spi_slave_cb_user_context_t *user_ctx = static_cast<spi_slave_cb_user_context_t*>(trans->user);
if (user_ctx->post_trans.user_cb) {
user_ctx->post_trans.user_cb(trans, user_ctx->post_trans.user_arg);
}
}
void spi_slave_task(void *arg)
{
ESP_LOGD(TAG, "spi_slave_task start");
spi_slave_context_t *ctx = static_cast<spi_slave_context_t*>(arg);
// initialize spi slave
esp_err_t err = spi_slave_initialize(ctx->host, &ctx->bus_cfg, &ctx->if_cfg, SPI_DMA_DISABLED);
assert(err == ESP_OK);
// initialize queues
s_trans_queue_handle = xQueueCreate(1, sizeof(spi_transaction_context_t));
assert(s_trans_queue_handle != NULL);
s_trans_result_handle = xQueueCreate(ctx->if_cfg.queue_size, sizeof(size_t));
assert(s_trans_result_handle != NULL);
s_trans_error_handle = xQueueCreate(ctx->if_cfg.queue_size, sizeof(esp_err_t));
assert(s_trans_error_handle != NULL);
s_in_flight_mailbox_handle = xQueueCreate(1, sizeof(size_t));
assert(s_in_flight_mailbox_handle != NULL);
// spi task
while (true) {
spi_transaction_context_t trans_ctx;
if (xQueueReceive(s_trans_queue_handle, &trans_ctx, RECV_TRANS_QUEUE_TIMEOUT_TICKS)) {
// update in-flight count
assert(trans_ctx.trans != nullptr);
assert(trans_ctx.size <= ctx->if_cfg.queue_size);
xQueueOverwrite(s_in_flight_mailbox_handle, &trans_ctx.size);
// execute new transaction if transaction request received from main task
ESP_LOGD(TAG, "new transaction request received (size = %u)", trans_ctx.size);
std::vector<esp_err_t> errs;
errs.reserve(trans_ctx.size);
for (size_t i = 0; i < trans_ctx.size; ++i) {
spi_slave_transaction_t *trans = &trans_ctx.trans[i];
esp_err_t err = spi_slave_queue_trans(ctx->host, trans, trans_ctx.timeout_ticks);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to execute spi_slave_queue_trans(): 0x%X", err);
}
errs.push_back(err);
}
// wait for the completion of all of the queued transactions
// reset result/error queue first
xQueueReset(s_trans_result_handle);
xQueueReset(s_trans_error_handle);
for (size_t i = 0; i < trans_ctx.size; ++i) {
// wait for completion of next transaction
size_t num_received_bytes = 0;
if (errs[i] == ESP_OK) {
spi_slave_transaction_t *rtrans;
esp_err_t err = spi_slave_get_trans_result(ctx->host, &rtrans, trans_ctx.timeout_ticks);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to execute spi_slave_get_trans_result(): 0x%X", err);
} else {
num_received_bytes = rtrans->trans_len / 8; // bit -> byte
ESP_LOGD(TAG, "transaction complete: %d bits (%d bytes) received", rtrans->trans_len, num_received_bytes);
}
} else {
ESP_LOGE(TAG, "skip spi_slave_get_trans_result() because queue was failed: index = %u", i);
}
// send the received bytes back to main task
if (!xQueueSend(s_trans_result_handle, &num_received_bytes, SEND_TRANS_RESULT_TIMEOUT_TICKS)) {
ESP_LOGE(TAG, "failed to send a number of received bytes to main task: %d", err);
}
// send the transaction error back to main task
if (!xQueueSend(s_trans_error_handle, &errs[i], SEND_TRANS_ERROR_TIMEOUT_TICKS)) {
ESP_LOGE(TAG, "failed to send a transaction error to main task: %d", err);
}
// update in-flight count
const size_t num_rest_in_flight = trans_ctx.size - (i + 1);
xQueueOverwrite(s_in_flight_mailbox_handle, &num_rest_in_flight);
}
// should be deleted because the ownership is moved from main task
delete[] trans_ctx.trans;
ESP_LOGD(TAG, "all requested transactions completed");
}
// terminate task if requested
if (xTaskNotifyWait(0, 0, NULL, 0) == pdTRUE) {
break;
}
}
ESP_LOGD(TAG, "terminate spi task as requested by the main task");
vQueueDelete(s_in_flight_mailbox_handle);
vQueueDelete(s_trans_result_handle);
vQueueDelete(s_trans_error_handle);
vQueueDelete(s_trans_queue_handle);
spi_slave_free(ctx->host);
xTaskNotifyGive(ctx->main_task_handle);
ESP_LOGD(TAG, "spi_slave_task finished");
vTaskDelete(NULL);
}
class Slave
{
spi_slave_context_t ctx;
std::vector<spi_slave_transaction_t> transactions;
spi_slave_cb_user_context_t cb_user_ctx;
TaskHandle_t spi_task_handle {NULL};
public:
/// @brief initialize SPI with the default pin assignment for HSPI, or VSPI
/// @param spi_bus HSPI, FSPI or VSPI
/// @return true if initialization succeeded, false otherwise
bool begin(const uint8_t spi_bus = HSPI)
{
#ifdef CONFIG_IDF_TARGET_ESP32
this->ctx.if_cfg.spics_io_num = (spi_bus == VSPI) ? SS : 15;
this->ctx.bus_cfg.sclk_io_num = (spi_bus == VSPI) ? SCK : 14;
this->ctx.bus_cfg.mosi_io_num = (spi_bus == VSPI) ? MOSI : 13;
this->ctx.bus_cfg.miso_io_num = (spi_bus == VSPI) ? MISO : 12;
#endif
return this->initialize(spi_bus);
}
/// @brief initialize SPI with HSPI/FSPI/VSPI, sck, miso, mosi, and ss pins
/// @param spi_bus HSPI, FSPI or VSPI
/// @param sck
/// @param miso
/// @param mosi
/// @param ss
/// @return true if initialization succeeded, false otherwise
bool begin(uint8_t spi_bus, int sck, int miso, int mosi, int ss)
{
this->ctx.if_cfg.spics_io_num = ss;
this->ctx.bus_cfg.sclk_io_num = sck;
this->ctx.bus_cfg.mosi_io_num = mosi;
this->ctx.bus_cfg.miso_io_num = miso;
return this->initialize(spi_bus);
}
/// @brief initialize SPI with HSPI/FSPI/VSPI and Qued SPI pins
/// @param spi_bus HSPI, FSPI or VSPI
/// @param sck
/// @param ss
/// @param data0
/// @param data1
/// @param data2
/// @param data3
bool begin(uint8_t spi_bus, int sck, int ss, int data0, int data1, int data2, int data3)
{
this->ctx.if_cfg.spics_io_num = ss;
this->ctx.bus_cfg.sclk_io_num = sck;
this->ctx.bus_cfg.data0_io_num = data0;
this->ctx.bus_cfg.data1_io_num = data1;
this->ctx.bus_cfg.data2_io_num = data2;
this->ctx.bus_cfg.data3_io_num = data3;
return this->initialize(spi_bus);
}
/// @brief initialize SPI with HSPI/FSPI/VSPI and Octo SPI pins
/// @param spi_bus HSPI, FSPI or VSPI
/// @param sck
/// @param ss
/// @param data0
/// @param data1
/// @param data2
/// @param data3
/// @param data4
/// @param data5
/// @param data6
/// @param data7
bool begin(uint8_t spi_bus, int sck, int ss, int data0, int data1, int data2, int data3, int data4, int data5, int data6, int data7)
{
this->ctx.if_cfg.spics_io_num = ss;
this->ctx.bus_cfg.sclk_io_num = sck;
this->ctx.bus_cfg.data0_io_num = data0;
this->ctx.bus_cfg.data1_io_num = data1;
this->ctx.bus_cfg.data2_io_num = data2;
this->ctx.bus_cfg.data3_io_num = data3;
this->ctx.bus_cfg.data4_io_num = data4;
this->ctx.bus_cfg.data5_io_num = data5;
this->ctx.bus_cfg.data6_io_num = data6;
this->ctx.bus_cfg.data7_io_num = data7;
return this->initialize(spi_bus);
}
/// @brief stop spi slave (terminate spi_slave_task and deinitialize spi)
void end()
{
if (this->spi_task_handle == NULL) {
ESP_LOGW(TAG, "spi_slave_task already terminated");
return;
}
xTaskNotifyGive(this->spi_task_handle);
if (xTaskNotifyWait(0, 0, NULL, pdMS_TO_TICKS(5000)) != pdTRUE) {
ESP_LOGW(TAG, "timeout waiting for the termination of spi_slave_task");
}
this->spi_task_handle = NULL;
}
/// @brief execute one transaction and wait for the completion
/// @param tx_buf pointer to the buffer of data to be sent
/// @param rx_buf pointer to the buffer of data to be received
/// @param size size of data to be sent
/// @param timeout_ms timeout in milliseconds
/// @return the size of received bytes
/// @note this function is blocking until the completion of transmission
size_t transfer(const uint8_t* tx_buf, uint8_t* rx_buf, size_t size, uint32_t timeout_ms = 0)
{
return this->transfer(0, tx_buf, rx_buf, size, timeout_ms);
}
/// @brief execute one transaction and wait for the completion of transmission to return the result
/// @param flags SPI_TRANS_* flags
/// @param tx_buf pointer to the buffer of data to be sent
/// @param rx_buf pointer to the buffer of data to be received
/// @param size size of data to be sent
/// @param timeout_ms timeout in milliseconds
/// @return the size of received bytes
/// @note this function is blocking until the completion of transmission
size_t transfer(
uint32_t flags,
const uint8_t* tx_buf,
uint8_t* rx_buf,
size_t size,
uint32_t timeout_ms
) {
if (!this->queue(flags, tx_buf, rx_buf, size)) {
return 0;
}
const auto results = this->wait(timeout_ms);
if (results.empty()) {
return 0;
} else {
return results[results.size() - 1];
}
}
/// @brief queue transaction to internal transaction buffer.
/// To start transaction, wait() or trigger() must be called.
/// @param tx_buf pointer to the buffer of data to be sent
/// @param rx_buf pointer to the buffer of data to be received
/// @param size size of data to be sent
/// @return true if the transaction is queued successfully, false otherwise
/// @note If the size of queued transactions exceeds pre-defined queue_size,
/// automatically wait for the completion of transmission and results are stored in the background.
/// The results are cleared when the next transaction is queued.
bool queue(const uint8_t* tx_buf, uint8_t* rx_buf, size_t size)
{
return this->queue(0, tx_buf, rx_buf, size);
}
/// @brief queue transaction to internal transaction buffer.
/// To start transaction, wait() or trigger() must be called.
/// @param flags SPI_TRANS_* flags
/// @param tx_buf pointer to the buffer of data to be sent
/// @param rx_buf pointer to the buffer of data to be received
/// @param size size of data to be sent
/// @return true if the transaction is queued successfully, false otherwise
/// @note If the size of queued transactions exceeds pre-defined queue_size,
/// automatically wait for the completion of transmission and results are stored in the background.
/// The results are cleared when the next transaction is queued.
bool queue(
uint32_t flags,
const uint8_t* tx_buf,
uint8_t* rx_buf,
size_t size
) {
if (size % 4 != 0) {
ESP_LOGW(TAG, "failed to queue transaction: buffer size must be multiples of 4 bytes");
return false;
}
if (this->transactions.size() >= this->ctx.if_cfg.queue_size) {
ESP_LOGW(TAG, "failed to queue transaction: queue is full - only %u transactions can be queued at once", this->ctx.if_cfg.queue_size);
return false;
}
this->queueTransaction(flags, size, tx_buf, rx_buf);
return true;
}
/// @brief execute queued transactions and wait for the completion.
/// rx_buf is automatically updated after the completion of each transaction.
/// @param timeout_ms timeout in milliseconds
/// @return a vector of the received bytes for all transactions
std::vector<size_t> wait(uint32_t timeout_ms = 0)
{
size_t num_will_be_queued = this->transactions.size();
if (!this->trigger(timeout_ms)) {
return std::vector<size_t>();
}
return this->waitTransaction(num_will_be_queued);
}
/// @brief execute queued transactions asynchronously in the background (without blocking)
/// numBytesReceivedAll() or numBytesReceived() is required to confirm the results of transactions
/// rx_buf is automatically updated after the completion of each transaction.
/// @param timeout_ms timeout in milliseconds
/// @return true if the transaction is queued successfully, false otherwise
bool trigger(uint32_t timeout_ms = 0)
{
if (this->transactions.empty()) {
ESP_LOGW(TAG, "failed to trigger transaction: no transaction is queued");
return false;
}
if (this->numTransactionsInFlight() > 0) {
ESP_LOGW(TAG, "failed to trigger transaction: there are already in-flight transactions");
return false;
}
spi_transaction_context_t trans_ctx {
.trans = new spi_slave_transaction_t[this->transactions.size()],
.size = this->transactions.size(),
.timeout_ticks = timeout_ms == 0 ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms),
};
for (size_t i = 0; i < this->transactions.size(); i++) {
trans_ctx.trans[i] = std::move(this->transactions[i]);
}
// NOTE: spi_transaction_ext_t should be delete inside of spi task after use
int ret = xQueueSend(s_trans_queue_handle, &trans_ctx, SEND_TRANS_QUEUE_TIMEOUT_TICKS);
// clearing transactions is safe because data was moved to trans_ctx
this->transactions.clear();
if (!ret) {
ESP_LOGE(TAG, "failed to queue transaction: transaction queue between main and spi task is full");
return false;
}
return true;
}
/// @brief return the number of in-flight transactions
/// @return the number of in-flight transactions
size_t numTransactionsInFlight()
{
size_t num_in_flight = 0;
xQueuePeek(s_in_flight_mailbox_handle, &num_in_flight, 0);
return num_in_flight;
}
/// @brief return the number of completed but not received transaction results
/// @return the number of completed but not received transaction results
size_t numTransactionsCompleted()
{
return uxQueueMessagesWaiting(s_trans_result_handle);
}
/// @brief return the number of completed but not received transaction errors
/// @return the number of completed but not received transaction errors
size_t numTransactionErrors()
{
return uxQueueMessagesWaiting(s_trans_error_handle);
}
/// @brief return the oldest result of the completed transaction (received bytes)
/// @return the oldest result of the completed transaction (received bytes)
/// @note this method pops front of the result queue
size_t numBytesReceived()
{
if (this->numTransactionsCompleted() > 0) {
size_t num_received_bytes = 0;
if (xQueueReceive(s_trans_result_handle, &num_received_bytes, RECV_TRANS_RESULT_TIMEOUT_TICKS)) {
return num_received_bytes;
} else {
ESP_LOGE(TAG, "failed to received queued result");
return 0;
}
}
return 0;
}
/// @brief return all results of the completed transactions (received bytes)
/// @return all results of the completed transactions (received bytes)
/// @note this method pops front of the result queue
std::vector<size_t> numBytesReceivedAll()
{
std::vector<size_t> results;
const size_t num_results = this->numTransactionsCompleted();
results.reserve(num_results);
for (size_t i = 0; i < num_results; ++i) {
results.emplace_back(this->numBytesReceived());
}
return results;
}
/// @brief return the oldest error of the completed transaction
/// @return the oldest error of the completed transaction
/// @note this method pops front of the error queue
esp_err_t error()
{
if (this->numTransactionErrors() > 0) {
esp_err_t err;
if (xQueueReceive(s_trans_error_handle, &err, RECV_TRANS_ERROR_TIMEOUT_TICKS)) {
return err;
} else {
ESP_LOGE(TAG, "failed to receive queued error");
return ESP_FAIL;
}
}
return ESP_OK;
}
/// @brief return all errors of the completed transactions
/// @return all errors of the completed transactions
/// @note this method pops front of the error queue
std::vector<esp_err_t> errors()
{
std::vector<esp_err_t> errs;
const size_t num_errs = this->numTransactionErrors();
errs.reserve(num_errs);
for (size_t i = 0; i < num_errs; ++i) {
errs.emplace_back(this->error());
}
return errs;
}
/// @brief check if the queued transactions are completed and all results are handled
/// @return true if the queued transactions are completed and all results are handled, false otherwise
bool hasTransactionsCompletedAndAllResultsHandled()
{
return this->numTransactionsInFlight() == 0 && this->numTransactionsCompleted() == 0;
}
/// @brief check if the queued transactions are completed
/// @param num_queued the number of queued transactions
/// @return true if the queued transactions are completed, false otherwise
bool hasTransactionsCompletedAndAllResultsReady(size_t num_queued)
{
return this->numTransactionsInFlight() == 0 && this->numTransactionsCompleted() == num_queued;
}
// ===== Main Configurations =====
// set these optional parameters before begin() if you want
/// @brief set spi data mode
/// @param mode SPI_MODE0, 1, 2, 3
/// @note alias for setSpiMode()
void setDataMode(uint8_t mode)
{
this->setSpiMode(mode);
}
/// @brief set queue size (default: 1)
/// @param size queue size
void setQueueSize(size_t size)
{
this->ctx.if_cfg.queue_size = size;
}
// ===== Optional Configurations =====
/// @brief Bitwise OR of SPI_SLAVE_* flags.
/// @param flags
void setSlaveFlags(uint32_t flags) { this->ctx.if_cfg.flags = flags; }
/// @brief SPI mode, representing a pair of (CPOL, CPHA) configuration: 0: (0, 0), 1: (0, 1), 2: (1, 0), 3: (1, 1)
/// @param n
void setSpiMode(uint8_t m) { this->ctx.if_cfg.mode = m; }
/// @brief Callback called after the SPI registers are loaded with new data.
/// @param post_setup_cb
/// @note This callback is called within interrupt context should be in IRAM for best performance, see "Transferring Speed" section in the SPI Master documentation for full details. If not, the callback may crash during flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.
void setPostSetupCb(const slave_transaction_cb_t &post_setup_cb) { this->ctx.if_cfg.post_setup_cb = post_setup_cb; }
/// @brief Callback called after a transaction is done.
/// @param post_trans_cb
/// @note This callback is called within interrupt context should be in IRAM for best performance, see "Transferring Speed" section in the SPI Master documentation for full details. If not, the callback may crash during flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.
void setPostTransCb(const slave_transaction_cb_t &post_trans_cb) { this->ctx.if_cfg.post_trans_cb = post_trans_cb; }
/// @brief set post_setup callback (ISR) and its argument that are called after transaction setup completed.
/// you can call this function before every transfer() / queue() to change the behavior per transaction.
/// see more details about callbacks at https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html#_CPPv4N29spi_device_interface_config_t6pre_cbE
/// @param cb callback that is called when pre callbacks are called
/// @param arg pointer to your own data that you want to pass to the callbak
/// @note post_setup callbacks will be called within the interrupt context
void setUserPostSetupCbAndArg(const spi_slave_user_cb_t &cb, void *arg)
{
this->cb_user_ctx.post_setup.user_cb = cb;
this->cb_user_ctx.post_setup.user_arg = arg;
}
/// @brief set post_trans callback (ISR) and its argument that are called after transaction completed.
/// you can call this function before every transfer() / queue() to change the behavior per transaction.
/// see more details about callbacks at https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html#_CPPv4N29spi_device_interface_config_t6pre_cbE
/// @param cb callback that is called when pre/post callbacks are called
/// @param arg pointer to your own data that you want to pass to the callbak
/// @note post_trans callbacks will be called within the interrupt context
void setUserPostTransCbAndArg(const spi_slave_user_cb_t &cb, void *arg)
{
this->cb_user_ctx.post_trans.user_cb = cb;
this->cb_user_ctx.post_trans.user_arg = arg;
}
private:
static spi_host_device_t hostFromBusNumber(uint8_t spi_bus)
{
switch (spi_bus) {
case FSPI:
#ifdef CONFIG_IDF_TARGET_ESP32
return SPI1_HOST;
#else
return SPI2_HOST;
#endif
case HSPI:
#if defined(CONFIG_IDF_TARGET_ESP32) || defined(CONFIG_IDF_TARGET_ESP32C3)
return SPI2_HOST;
#else
return SPI3_HOST;
#endif
#ifdef CONFIG_IDF_TARGET_ESP32
case VSPI:
return SPI3_HOST;
#endif
default:
return SPI2_HOST;
}
}
bool initialize(const uint8_t spi_bus)
{
this->ctx.host = this->hostFromBusNumber(spi_bus);
this->ctx.bus_cfg.flags |= SPICOMMON_BUSFLAG_SLAVE;
this->ctx.main_task_handle = xTaskGetCurrentTaskHandle();
this->transactions.reserve(this->ctx.if_cfg.queue_size);
// create spi slave task
std::string task_name = std::string("spi_slave_task_") + std::to_string(this->ctx.if_cfg.spics_io_num);
int ret = xTaskCreatePinnedToCore(spi_slave_task, task_name.c_str(), SPI_SLAVE_TASK_STASCK_SIZE, static_cast<void*>(&this->ctx), SPI_SLAVE_TASK_PRIORITY, &this->spi_task_handle, 1);
if (ret != pdPASS) {
ESP_LOGE(TAG, "failed to create spi_slave_task: %d", ret);
return false;
}
return true;
}
spi_slave_transaction_t generateTransaction(uint32_t flags, size_t size, const uint8_t* tx_buf, uint8_t* rx_buf)
{
spi_slave_transaction_t trans;
// trans.flags = flags;
trans.length = 8 * size; // in bit size
trans.trans_len = 0; // will be written after transaction
trans.tx_buffer = (tx_buf == nullptr) ? NULL : tx_buf;
trans.rx_buffer = (rx_buf == nullptr) ? NULL : rx_buf;
trans.user = &this->cb_user_ctx; // user-defined callback and arg
return trans;
}
void queueTransaction(uint32_t flags, size_t size, const uint8_t* tx_buf, uint8_t* rx_buf)
{
spi_slave_transaction_t trans = generateTransaction(flags, size, tx_buf, rx_buf);
this->transactions.push_back(std::move(trans));
}
std::vector<size_t> waitTransaction(size_t num_will_be_queued)
{
// transactions inside of spi task will be timeout if failed in the background
while (!this->hasTransactionsCompletedAndAllResultsReady(num_will_be_queued)) {
vTaskDelay(1);
}
return this->numBytesReceivedAll();
}
};
ARDUINO_ESP32_SPI_SLAVE_NAMESPACE_END
using ESP32SPISlave = arduino::esp32::spi::slave::Slave;
#endif // ESP32SPI_SLAVE_H