-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresearch.py
109 lines (90 loc) · 5.02 KB
/
research.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys #ドラッグドロップ
import matplotlib.pyplot as plt # プロット
import numpy as np # 数学ライブラリ
import os
for j in range(1, len(sys.argv)):
# --------- ファイルを読む ---------
data = np.genfromtxt(sys.argv[j], delimiter=",", skip_header=2, dtype='float',
names=["Time", "Ch1", "Ch2"])
# ----------------- 定数 -------------------
def parameter(x): # ファイル名から変数を読む関数
return(os.path.basename(sys.argv[j]).split(" ")[x]) # csv名を空白で区切ったx番目
frequency = float(parameter(1).replace("kHz", "" ))
N = parameter(5).replace("n", "-").split("-")
N = [N[0], int(N[1]), int(N[2])]
renji = float(parameter(6).replace("range.csv", "" ))
T = 1 / (frequency * 10**3) * 10**6 # 周期(μs)
point_all = len(data) # 列数
dt = renji / point_all
point_float = T / dt # 1周期ポイント数=全ポイント数/レンジ(個/秒)*周期(秒)
point = int(round(point_float)) # 丸めてからint型に
DCCT_late_time = 6*10**(-3) # μs
DCCT_late = round(point / T * DCCT_late_time)
jirotyo, jiromenseki = 0.031852683, 0.00001207 # エクセルでは外径と内径から計算している
#jirotyo, jiromenseki = 0.0635, 0.0000654
# --------- 読み込んだデータフレームの加工 ---------
Current_late = data['Ch1'][int(DCCT_late):] # Ch1の列をDCCTの遅れ分ずらす
#center = len(Current_late)-np.nanargmax(Current_late[::-1]) -1 # 最大値を探して少し調整
begin = np.nanargmin(np.abs(data['Ch2'][0:int(point_all/4)])) # 1周期の開始点 int(center - (point / 2))
CurrentT = Current_late[begin:begin+point] # 1周期の開始点からポイント数行まで取り出す
Voltage_point = data['Ch2'][begin:begin+point]
VoltageT = Voltage_point-Voltage_point.mean()
Time = data['Time'][begin:begin+point] * 10**6 #1周期の絶対時間(μs)
TimeT = Time - Time[0] #1周期の相対時間
t = np.arange(0, dt * point, dt)
# --------- フーリエ級数展開 ---------
def fourier(i_data, t_data):
fourier = 161 #フーリエ級数展開の回数
def fcos(t, n):
return np.cos(n * 2 * np.pi / T * t) # cos(n * ωt)
def fsin(t, n):
return np.sin(n * 2 * np.pi / T * t)
i_m = i_hf = 0
for n in range(1, fourier + 1):
i_cos = i_data * fcos(t_data, n)
an = (2 / T) * i_cos.sum() * dt
i_m += an * fcos(t , n)
i_sin = i_data * fsin(t_data, n)
bn = (2 / T) * i_sin.sum() * dt
i_hf += bn * fsin(t , n)
return [i_m, i_hf]
i_m, i_hf = fourier(CurrentT, TimeT)[0], fourier(CurrentT, TimeT)[1]
i = i_m + i_hf
v = fourier(VoltageT, TimeT)[0] + fourier(VoltageT, TimeT)[1]
# --------- BHループ計算の準備 ---------
H = i * N[1] / jirotyo # Hl=Ni
int_v_dt = np.cumsum(v * dt)
B = int_v_dt / (N[2] * jiromenseki) * 10**-6 #NBA=∫vdt
B_fix = B-(B.max() + B.min())/2
# --------- 描写 -----------
fig = plt.figure(figsize=(10,8)) # グラフを表示する(5,4), (24,4)
fig.suptitle("dB/dt={0} | Bm={1:.3g} mT | {2} | turns{3}:{4}".format(parameter(3), B_fix.max()*1000, parameter(2) ,N[1], N[2]))
fig.subplots_adjust(hspace=0.3, wspace=0.5)
ax1 = fig.add_subplot(2, 2, 1) # 2行2列分割レイアウトの順序1にaxes追加
ax2 = ax1.twinx() # ax2をax1に関連付ける
ax1.set_title("↓フーリエ級数展開後↓", fontdict={'family': 'IPAexGothic'})
ax1.plot(t, i, marker="None", label="Current", color='b', linewidth = 0.5)
#ax1.plot(TimeT[center-begin], CurrentT[center-begin], marker="o")
ax2.plot(t, v, marker="None", label="Voltage", color='r', linewidth = 0.5)
#ax1.legend(bbox_to_anchor=(0.1, 1.15), loc='upper left')
#ax2.legend(bbox_to_anchor=(0.5, 1.15), loc='upper left')
ax1.grid(True), ax1.locator_params(axis='x', nbins=5)
ax1.set_xlabel("Time [$\mu$s]")
ax1.set_ylabel("Current [A]"), ax2.set_ylabel("Voltage [V]")
# BHループ
ax3 = fig.add_subplot(2, 2, 2) # 2行2列分割レイアウトの順序2にaxes追加
ax3.plot(H, B_fix, marker="None", linewidth = 0.5)
ax3.grid(True), ax3.locator_params(axis='x', nbins=5)
ax3.set_xlabel("H(Magnetic field intensity) [A/m]")
ax3.set_ylabel("B(Magnetic flux density) [T]")
# iの成分
ax4 = fig.add_subplot(2, 2, 3)
ax4.plot(t, i_m, marker="None", label="$i_m$", color='b', linewidth = 0.5)
ax4.plot(t, i_hf, marker="None", label="$i_h+i_f$", color='skyblue', linewidth = 0.5)
ax4.set_xlabel("Time [$\mu$s]")
ax4.set_ylabel("Current [A]")
ax4.grid(True), ax4.locator_params(axis='x', nbins=5)
ax4.legend()
# 共通
#fig.savefig("figure_{0:.4g}kHz.png".format(frequency))
plt.show()