We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1、表13给出了不同数据集使用了不同的参数设置,如果想在自己的数据集上调优,请问优先调整哪些参数呢? 2、训练半监督之前需要先进行有监督模型的训练,请问为什么半监督用了8卡,而有监督只用了2卡训练,如果有监督用8卡是否预训练模型指标更高呢?还是说LabelMatch方法需要的有监督预训练模型不需要很强时,性能提升比使用更强的预训练模型时,指标更高? 最后感谢你们开源的优秀工作!
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
No branches or pull requests
1、表13给出了不同数据集使用了不同的参数设置,如果想在自己的数据集上调优,请问优先调整哪些参数呢?
2、训练半监督之前需要先进行有监督模型的训练,请问为什么半监督用了8卡,而有监督只用了2卡训练,如果有监督用8卡是否预训练模型指标更高呢?还是说LabelMatch方法需要的有监督预训练模型不需要很强时,性能提升比使用更强的预训练模型时,指标更高?
最后感谢你们开源的优秀工作!
The text was updated successfully, but these errors were encountered: