-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclef_evaluation.py
541 lines (446 loc) · 16.8 KB
/
clef_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#!/usr/bin/env python3
# coding: utf-8
"""
Evaluate the systems for the HIPE Shared Task
Usage:
clef_evaluation.py --pred=<fpath> --ref=<fpath> --task=nerc_coarse [options]
clef_evaluation.py --pred=<fpath> --ref=<fpath> --task=nerc_fine [options]
clef_evaluation.py --pred=<fpath> --ref=<fpath> --task=nel [--n_best=<n>] [options]
clef_evaluation.py -h | --help
Options:
-h --help Show this screen.
-t --task=<type> Type of evaluation task (nerc_coarse, nerc_fine, nel).
-e --hipe_edition=<str> Specify the HIPE edition (triggers different set of columns to be considered during eval). Possible values: hipe-2020, hipe-2022 [default: hipe-2020]
-r --ref=<fpath> Path to gold standard file in CONLL-U-style format.
-p --pred=<fpath> Path to system prediction file in CONLL-U-style format.
-o --outdir=<dir> Path to output directory [default: .].
-l --log=<fpath> Path to log file.
-g --original_nel It splits the NEL boundaries using original CLEF algorithm.
-n, --n_best=<n> Evaluate NEL at particular cutoff value(s) when provided with a ranked list of entity links. Example: 1,3,5 [default: 1].
--noise-level=<str> Evaluate NEL or NERC also on particular noise levels (normalized Levenshtein distance of their manual OCR transcript). Example: 0.0-0.1,0.1-1.0,
--time-period=<str> Evaluate NEL or NERC also on particular time periods. Example: 1900-1950,1950-2000.
--glue=<str> Provide two columns separated by a plus (+) whose label are glued together for the evaluation (e.g. COL1_LABEL.COL2_LABEL). When glueing more than one pair, separate by comma.
--skip-check Skip check that ensures that the files name is in line with submission requirements.
--tagset=<fpath> Path to file containing the valid tagset of CLEF-HIPE.
--suffix=<str> Suffix that is appended to output file names and evaluation keys.
"""
import logging
import csv
import pathlib
import json
import sys
import itertools
from collections import defaultdict
from datetime import datetime
from docopt import docopt
from hipe_evaluation.ner_eval import Evaluator
# FINE_COLUMNS = ["NE-FINE-LIT", "NE-FINE-METO", "NE-FINE-COMP", "NE-NESTED"]
# COARSE_COLUMNS = ["NE-COARSE-LIT", "NE-COARSE-METO"]
# NEL_COLUMNS = ["NEL-LIT", "NEL-METO"]
COARSE_COLUMNS_HIPE2020 = ["NE-COARSE-LIT", "NE-COARSE-METO"]
FINE_COLUMNS_HIPE2020 = ["NE-FINE-LIT", "NE-FINE-METO", "NE-FINE-COMP", "NE-NESTED"]
NEL_COLUMNS_HIPE2020 = ["NEL-LIT", "NEL-METO"]
COARSE_COLUMNS_HIPE2022 = ["NE-COARSE-LIT"]
FINE_COLUMNS_HIPE2022 = ["NE-FINE-LIT", "NE-NESTED"]
NEL_COLUMNS_HIPE2022 = ["NEL-LIT"]
HIPE_EDITIONS = ["HIPE-2020", "HIPE-2022"]
def enforce_filename(fname: str):
try:
f_obj = pathlib.Path(fname.lower())
submission = f_obj.stem
suffix = f_obj.suffix
team, bundle, lang, n_submission = submission.split("_")
bundle = int(bundle.lstrip("bundle"))
assert suffix == ".tsv"
assert lang in ("de", "fr", "en")
assert bundle in range(1, 6)
except (ValueError, AssertionError):
msg = (
f"The filename of the system response '{fname}' needs to comply with the HIPE 2020 shared task requirements. "
+ "Rename according to the following scheme: TEAMNAME_TASKBUNDLEID_LANG_RUNNUMBER.tsv"
)
logging.error(msg)
raise AssertionError(msg)
return submission, lang
def enforce_filename_2022(fname: str):
"""
Check if filename comply with the HIPE2022 convention:
TEAMNAME_TASKBUNDLEID_DATASETALIAS_LANG_RUNNUMBER.tsv
"""
try:
f_obj = pathlib.Path(fname.lower())
submission = f_obj.stem
suffix = f_obj.suffix
team, bundle, dataset, lang, run_nb = submission.split("_")
logging.info(
f"team {team} bundle {bundle} dataset {dataset} lang {lang} run_nb {run_nb}"
)
bundle = int(bundle.lstrip("bundle"))
assert suffix == ".tsv", f"Problem with file suffix {suffix}"
assert bundle in range(1, 6), f"Problem with file bundle {bundle}"
assert dataset in {
"ajmc",
"newseye",
"hipe2020",
"topres19th",
"sonar",
"letemps",
}, f"Problem with dataset {dataset}"
assert lang in {"de", "fr", "en", "sv", "fi"}, f"Problem with language {lang}"
assert int(run_nb) in range(1, 3), f"Problem with run number {run_nb}"
except (ValueError, AssertionError) as e:
logging.error(e)
msg = (
f"The filename of the system response '{fname}' needs to comply with the HIPE 2022 shared task requirements. "
+ "Rename according to the following scheme: TEAMNAME_TASKBUNDLEID_DATASETALIAS_LANG_RUNNUMBER.tsv"
)
logging.error(msg)
raise AssertionError(msg)
return submission, lang
def evaluation_wrapper(
evaluator,
cols: list,
eval_type: str,
n_best: int = 1,
noise_levels: list = [None],
time_periods: list = [None],
tags: set = None,
additional_cols: list = None, # TODO: find a better name
):
def recursive_defaultdict():
return defaultdict(recursive_defaultdict)
results = recursive_defaultdict()
if additional_cols is not None:
try:
assert len(cols) == len(additional_cols)
except AssertionError:
msg = f"Additional columns must have the same size that columns. Got {cols} and {additional_cols}."
logging.error(msg)
raise AssertionError(msg)
for (col_id, col), noise_level, time_period in itertools.product(
enumerate(cols), noise_levels, time_periods
):
additional_col = None
if additional_cols is not None:
additional_col = additional_cols[col_id]
eval_global, eval_per_tag = (
evaluator.evaluate( # TODO: reorder passed args to match order of eval function def
col,
eval_type=eval_type,
merge_lines=True, # TODO: should be false for all hipe 2022
n_best=n_best,
noise_level=noise_level,
time_period=time_period,
tags=tags,
additional_columns=additional_col,
)
)
time_period = define_time_label(time_period)
noise_level = define_noise_label(noise_level)
# add aggregated stats across types as artificial tag
results[col][time_period][noise_level] = eval_per_tag
results[col][time_period][noise_level]["ALL"] = eval_global
return results
def get_results(
f_ref: str,
f_pred: str,
task: str,
edition: str,
skip_check: bool = False,
glueing_cols: str = None,
n_best: list = [1],
outdir: str = ".",
suffix: str = "",
f_tagset: str = None,
noise_levels: list = [None],
time_periods: list = [None],
original_nel: bool = False,
):
if not skip_check:
if edition == "HIPE-2020":
submission, lang = enforce_filename(f_pred)
elif edition == "HIPE-2022":
submission, lang = enforce_filename_2022(f_pred)
else:
submission = f_pred
lang = "LANG" # TODO: rm (?) not used afterwards it seems.
if glueing_cols:
glueing_pairs = glueing_cols.split(",")
glueing_col_pairs = [pair.split("+") for pair in glueing_pairs]
else:
glueing_col_pairs = None
if f_tagset: # TODO: adapt for different tagsets (?) would be stricter.
with open(f_tagset) as f_in:
tagset = set(f_in.read().upper().splitlines())
else:
tagset = None
evaluator = Evaluator(f_ref, f_pred, glueing_col_pairs)
if task in ("nerc_fine", "nerc_coarse"):
if edition == "HIPE-2022":
ner_columns = (
FINE_COLUMNS_HIPE2022
if task == "nerc_fine"
else COARSE_COLUMNS_HIPE2022
)
elif edition == "HIPE-2020":
ner_columns = (
FINE_COLUMNS_HIPE2020
if task == "nerc_fine"
else COARSE_COLUMNS_HIPE2020
)
eval_stats = evaluation_wrapper(
evaluator,
eval_type="nerc",
cols=ner_columns,
tags=tagset,
noise_levels=noise_levels,
time_periods=time_periods,
)
fieldnames, rows = assemble_tsv_output(submission, eval_stats, suffix=suffix)
elif task == "nel":
rows = []
eval_stats = {}
nel_columns = (
NEL_COLUMNS_HIPE2020 if edition == "HIPE-2020" else NEL_COLUMNS_HIPE2022
)
if original_nel:
nel_additional_cols = None
else:
nel_additional_cols = (
COARSE_COLUMNS_HIPE2020
if edition == "HIPE-2020"
else COARSE_COLUMNS_HIPE2022
)
for n in n_best:
eval_stats[n] = evaluation_wrapper(
evaluator,
eval_type="nel",
cols=nel_columns,
additional_cols=nel_additional_cols,
n_best=n,
noise_levels=noise_levels,
time_periods=time_periods,
)
fieldnames, rows_temp = assemble_tsv_output(
submission,
eval_stats[n],
n_best=n,
# regimes=["fuzzy"],
only_aggregated=True,
suffix=suffix,
)
rows += rows_temp
suffix = "_" + suffix if suffix else ""
f_sub = pathlib.Path(f_pred)
f_tsv = str(
pathlib.Path(outdir) / f_sub.name.replace(".tsv", f"_{task}{suffix}.tsv")
)
f_json = str(
pathlib.Path(outdir) / f_sub.name.replace(".tsv", f"_{task}{suffix}.json")
)
# write condensed results to tsv
with open(f_tsv, "w") as csvfile:
writer = csv.DictWriter(csvfile, delimiter="\t", fieldnames=fieldnames)
writer.writeheader()
writer.writerows(rows)
# write detailed results to json
with open(f_json, "w") as jsonfile:
json.dump(
eval_stats,
jsonfile,
indent=4,
)
def define_noise_label(noise_level):
if noise_level:
noise_lower, noise_upper = noise_level
return f"LED-{noise_lower}-{noise_upper}"
else:
return "LED-ALL"
def define_time_label(time_period):
if time_period:
date_start, date_end = time_period
if all(
[
True
for date in [date_start, date_end]
if date.day == 1 and date.month == 1
]
):
# shorten label if only a year was provided (no particular month or day)
date_start, date_end = date_start.strftime("%Y"), date_end.strftime("%Y")
else:
date_start, date_end = date_start.strftime("%Y"), date_end.strftime("%Y")
return f"TIME-{date_start}-{date_end}"
else:
return "TIME-ALL"
def assemble_tsv_output(
submission,
eval_stats,
n_best=1,
regimes=["fuzzy", "strict"],
only_aggregated=False,
suffix="",
):
metrics = ("P", "R", "F1")
figures = ("TP", "FP", "FN")
aggregations = ("micro", "macro_doc")
fieldnames = [
"System",
"Evaluation",
"Label",
"P",
"R",
"F1",
"F1_std",
"P_std",
"R_std",
"TP",
"FP",
"FN",
]
rows = []
# dirty lookup of unknown keys to avoid for-loops
col = next(iter(eval_stats))
time_periods = list(iter(eval_stats[col]))
noise_levels = list(iter(eval_stats[col][time_periods[0]]))
for col, time_period, noise_level, aggr, regime in itertools.product(
sorted(eval_stats), time_periods, noise_levels, aggregations, regimes
):
n_best_suffix = f"-@{n_best}" if "NEL" in col else ""
eval_regime = (
f"{col}-{aggr}-{regime}-"
+ f"{suffix + '-' if suffix else ''}"
+ time_period
+ "-"
+ noise_level
+ n_best_suffix
)
# mapping terminology fuzzy->type
regime = "ent_type" if regime == "fuzzy" else regime
eval_handle = eval_stats[col][time_period][noise_level]
# collect metrics
for tag in sorted(eval_handle):
# collect only aggregated metrics
if only_aggregated and tag != "ALL":
continue
results = {}
results["System"] = submission
results["Evaluation"] = eval_regime
results["Label"] = tag
for metric in metrics:
mapped_metric = f"{metric}_{aggr}"
results[metric] = eval_handle[tag][regime][mapped_metric]
# add TP/FP/FN for micro analysis
if aggr == "micro":
for fig in figures:
results[fig] = eval_handle[tag][regime][fig]
if "macro" in aggr:
for metric in metrics:
mapped_metric = f"{metric}_{aggr}_std"
results[metric + "_std"] = eval_handle[tag][regime][mapped_metric]
for key, val in results.items():
try:
results[key] = round(val, 3)
except TypeError:
# some values are empty
pass
rows.append(results)
return fieldnames, rows
def main(args):
f_ref = args["--ref"]
f_pred = args["--pred"]
outdir = args["--outdir"]
hipe_edition = args["--hipe_edition"].upper() # mandatory option
f_log = args["--log"]
task = args["--task"]
original_nel = args["--original_nel"]
n_best = args["--n_best"]
noise_level = args["--noise-level"]
time_period = args["--time-period"]
glueing_cols = args["--glue"]
skip_check = args["--skip-check"]
f_tagset = args["--tagset"]
suffix = args["--suffix"]
log_fmt = f"%(asctime)s - %(levelname)s - {f_pred} - %(message)s"
logging.basicConfig(fmt=log_fmt)
# log warnings to file
handler1 = logging.FileHandler(f_log, mode="w")
handler1.setLevel(logging.WARNING)
handler1.setFormatter(logging.Formatter(fmt=log_fmt))
logging.getLogger().addHandler(handler1)
# log errors also to console
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.WARNING)
handler.setFormatter(logging.Formatter(fmt=log_fmt))
logging.getLogger().addHandler(handler)
if hipe_edition not in HIPE_EDITIONS:
msg = f"Hipe edition was not or incorrectly set. Use --hipe_edition=hipe-2022 or --hipe_edition=hipe-2022. '"
logging.error(msg)
sys.exit(1)
if n_best:
n_best = [int(n) for n in n_best.split(",")]
else:
n_best = [1]
if noise_level:
noise_levels = [level.split("-") for level in noise_level.split(",") if level]
logging.warning(f"noise_level `{noise_level}` noise_levels {noise_levels}")
assert (
len(noise_levels[0]) == 2
), f"found invalid noise level argument {noise_level} leading to {noise_levels}"
noise_levels = [
tuple([float(lower), float(upper)]) for lower, upper in noise_levels
]
# add case to evaluate on all entities regardless of noise
noise_levels = [None] + noise_levels
else:
noise_levels = [None]
if time_period:
time_periods = [period.split("-") for period in time_period.split(",")]
try:
time_periods = [
(datetime.strptime(period[0], "%Y"), datetime.strptime(period[1], "%Y"))
for period in time_periods
]
except ValueError:
time_periods = [
(
datetime.strptime(period[0], "%Y/%m/%d"),
datetime.strptime(period[1], "%Y/%m/%d"),
)
for period in time_periods
]
# add case to evaluate on all entities regardless of period
time_periods = [None] + time_periods
else:
time_periods = [None]
try:
get_results(
f_ref,
f_pred,
task,
hipe_edition,
skip_check,
glueing_cols,
n_best,
outdir,
suffix,
f_tagset,
noise_levels,
time_periods,
original_nel,
)
except AssertionError as e:
# don't interrupt the pipeline
print(e)
################################################################################
if __name__ == "__main__":
args = docopt(__doc__)
tasks = ("nerc_coarse", "nerc_fine", "nel")
if args["--task"] not in tasks:
msg = "Please restrict to one of the available evaluation tasks: " + ", ".join(
tasks
)
logging.error(msg)
sys.exit(1)
logging.debug(f"ARGUMENTS {args}")
main(args)