-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnormalize_linking.py
170 lines (128 loc) · 5.33 KB
/
normalize_linking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
# coding: utf-8
"""
Normalize entity linking by remapping links according to an external file
Usage:
normalize_linking.py -i=<fpath> -o=<fpath> [--norm-time (--norm-histo --map=<fpath>) --union-meto-lit] [--hipe_edition=<str>]
normalize_linking.py -h | --help
Options:
-h --help Show this screen.
-i --in=<fpath> File path to original system response.
-o --out=<fpath> File path to normalized system response.
-m --map=<fpath> File path to link historical mapping resource.
--norm-time Normalize NEL for time mentions by linking to NIL.
--norm-histo Normalize NEL for historical entities
--union-meto-lit Unionize literal and metonymic columns (apply on both columns).
-e --hipe_edition=<str> Specify the HIPE edition. Ignores METO columns if set to hipe-2022. Possible values: hipe-2020, hipe-2022 [default: hipe-2020]
All file path can be local or remote URLs.
"""
import csv
import itertools
import pandas as pd
from docopt import docopt
HIPE_EDITIONS = ["HIPE-2020", "HIPE-2022"]
def get_mappings(f_map):
df_mapping = pd.read_csv(f_map, delimiter="\t")
df_mapping = df_mapping.melt("Main").drop("variable", axis=1)
df_mapping["Main"] = df_mapping["Main"].str.extract("(Q[0-9]+)")
df_mapping["value"] = df_mapping["value"].str.extract("(Q[0-9]+)")
mapping = dict(df_mapping[["value", "Main"]].values)
return mapping
def normalize_n_to_n(df: pd.DataFrame, mapping: dict):
"""
Remap linking alternatives to a common main identity.
"""
try:
# remap literal NEL column
df["NEL-LIT"] = df["NEL-LIT"].str.split("|")
df["NEL-LIT"] = df["NEL-LIT"].apply(
lambda row: [mapping[k] if mapping.get(k) else k for k in row]
)
df["NEL-LIT"] = df["NEL-LIT"].str.join("|")
# remap metonymic NEL column
df["NEL-METO"] = df["NEL-METO"].str.split("|")
df["NEL-METO"] = df["NEL-METO"].apply(
lambda row: [mapping[k] if mapping.get(k) else k for k in row]
)
df["NEL-METO"] = df["NEL-METO"].str.join("|")
except KeyError:
pass
return df
def unionize_meto_lit(df: pd.DataFrame):
"""
Unionize the metonymic and the literal columns (apply on both columns).
The order is kept and "EMPTY" is used as placeholder in case of mismatching
list length.
"""
def union(list1, list2):
if list1[0]:
return list(
itertools.chain.from_iterable(
itertools.zip_longest(list1, list2, fillvalue="EMPTY")
)
)
else:
return [""]
try:
df["NEL-LIT-LIST"] = df["NEL-LIT"].str.split("|")
df["NEL-METO-LIST"] = df["NEL-METO"].str.split("|")
# unionize the literal and metonymic columns as ranked list
df["NEL-LIT-UNION"] = (
df[["NEL-LIT-LIST", "NEL-METO-LIST"]]
.dropna()
.apply(lambda x: union(x[0], x[1]), axis=1)
)
df["NEL-METO-UNION"] = (
df[["NEL-METO-LIST", "NEL-LIT-LIST"]]
.dropna()
.apply(lambda x: union(x[0], x[1]), axis=1)
)
df["NEL-LIT-UNION"] = df["NEL-LIT-UNION"].str.join("|")
df["NEL-METO-UNION"] = df["NEL-METO-UNION"].str.join("|")
# keep the original _ for non-annotations
# as there may be literal annotations lacking a metonymic sense
# may be vice-versa
df.loc[df["NEL-METO"] == "_", "NEL-METO-UNION"] = "_"
df.loc[df["NEL-METO"] == "-", "NEL-METO-UNION"] = "-"
df.loc[df["NEL-LIT"] == "_", "NEL-LIT-UNION"] = "_"
df.loc[df["NEL-LIT"] == "-", "NEL-LIT-UNION"] = "-"
df["NEL-LIT"] = df["NEL-LIT-UNION"]
df["NEL-METO"] = df["NEL-METO-UNION"]
# remove intermediate results
df = df.drop(columns=["NEL-LIT-UNION", "NEL-METO-UNION", "NEL-LIT-LIST", "NEL-METO-LIST"])
except KeyError:
pass
return df
def remove_time_linking(df, replacement="NIL",map_meto=True):
try:
df.loc[df["NE-COARSE-LIT"].str.contains("time"), "NEL-LIT"] = replacement
if map_meto:
df.loc[df["NE-COARSE-LIT"].str.contains("time"), "NEL-METO"] = replacement
except KeyError:
pass
return df
def main(args):
f_in = args["--in"]
f_out = args["--out"]
f_map = args["--map"]
norm_time = args["--norm-time"]
norm_histo = args["--norm-histo"]
unionize = args["--union-meto-lit"]
hipe_edition = args["--hipe_edition"].upper() # mandatory option
if hipe_edition not in HIPE_EDITIONS:
msg = f"Hipe edition was not or incorrectly set. Use --hipe_edition=hipe-2022 or --hipe_edition=hipe-2022. '"
logging.error(msg)
sys.exit(1)
df = pd.read_csv(f_in, sep="\t", quoting=csv.QUOTE_NONE, quotechar="", skip_blank_lines=False)
df = df.fillna(value={"NE-COARSE-LIT": "", "NEL-LIT": "", "NEL-METO": ""})
if norm_histo:
mappings = get_mappings(f_map)
df = normalize_n_to_n(df, mappings)
if norm_time:
df = remove_time_linking(df,map_meto=hipe_edition == 'HIPE-2020')
if unionize:
df = unionize_meto_lit(df)
df.to_csv(f_out, index=False, sep="\t", quoting=csv.QUOTE_NONE, quotechar="")
if __name__ == "__main__":
arguments = docopt(__doc__)
main(arguments)