-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlearn_gmm.py
executable file
·68 lines (50 loc) · 2.32 KB
/
learn_gmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
import math
import numpy
import pickle
import sklearn
import sys
from stf import STF
from mfcc import MFCC
from dtw import DTW
from gmmmap import GMMMap, TrajectoryGMMMap
DIMENSION = 16
if __name__ == '__main__':
if len(sys.argv) < 4:
print 'Usage: %s [list of source stf] [list of target stf] [output file]' % sys.argv[0]
sys.exit()
source_list = open(sys.argv[1]).read().strip().split('\n')
target_list = open(sys.argv[2]).read().strip().split('\n')
assert len(source_list) == len(target_list)
learn_data = None
square_mean = numpy.zeros(DIMENSION)
mean = numpy.zeros(DIMENSION)
for i in xrange(len(source_list)):
target = STF()
target.loadfile(target_list[i])
mfcc = MFCC(target.SPEC.shape[1] * 2, target.frequency, dimension = DIMENSION)
target_mfcc = numpy.array([mfcc.mfcc(target.SPEC[frame]) for frame in xrange(target.SPEC.shape[0])])
target_data = numpy.hstack([target_mfcc, mfcc.delta(target_mfcc)])
source = STF()
source.loadfile(source_list[i])
mfcc = MFCC(source.SPEC.shape[1] * 2, source.frequency)
source_mfcc = numpy.array([mfcc.mfcc(source.SPEC[frame]) for frame in xrange(source.SPEC.shape[0])])
dtw = DTW(source_mfcc, target_mfcc, window = abs(source.SPEC.shape[0] - target.SPEC.shape[0]) * 2)
warp_mfcc = dtw.align(source_mfcc)
warp_data = numpy.hstack([warp_mfcc, mfcc.delta(warp_mfcc)])
data = numpy.hstack([warp_data, target_data])
if learn_data is None:
learn_data = data
else:
learn_data = numpy.vstack([learn_data, data])
square_mean = (square_mean * (learn_data.shape[0] - target_mfcc.shape[0]) + (target_mfcc ** 2).sum(axis = 0)) / learn_data.shape[0]
mean = (mean * (learn_data.shape[0] - target_mfcc.shape[0]) + target_mfcc.sum(axis = 0)) / learn_data.shape[0]
gmm = sklearn.mixture.GMM(n_components = 2, covariance_type = 'full')
gmm.fit(learn_data)
gv = square_mean - mean ** 2
gv_gmm = sklearn.mixture.GMM(covariance_type = 'full')
gv_gmm.fit(gv)
gmmmap = (TrajectoryGMMMap(gmm, learn_data.shape[0], gv_gmm), TrajectoryGMMMap(gmm, learn_data.shape[0], gv_gmm, swap = True))
output = open(sys.argv[3], 'wb')
pickle.dump(gmmmap, output)
output.close()