forked from MiaoDragon/Hybrid-MPNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplan_r2d.py
96 lines (78 loc) · 3.32 KB
/
plan_r2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import math
size=4
def overlap(b1corner,b1axis,b1orign,b2corner,b2axis,b2orign):
for a in range(0,2):
t=b1corner[0][0]*b2axis[a][0]+b1corner[0][1]*b2axis[a][1]
tMin = t
tMax = t
for c in range(1,4):
t = b1corner[c][0]*b2axis[a][0]+b1corner[c][1]*b2axis[a][1]
if t < tMin:
tMin = t
elif t > tMax:
tMax = t
if ((tMin > (1+ b2orign[a])) or (tMax < b2orign[a])):
return False
return True
def IsInCollision(stateIn,obc):
if abs(stateIn[0]) > 20. or abs(stateIn[1]) > 20.:
return True
robot_corner=np.zeros((4,2),dtype=np.float32)
robot_axis=np.zeros((2,2),dtype=np.float32)
robot_orign=np.zeros(2,dtype=np.float32)
length=np.zeros(2,dtype=np.float32)
X1=np.zeros(2,dtype=np.float32)
Y1=np.zeros(2,dtype=np.float32)
X1[0]=math.cos(stateIn[2])*(2.0/2.0)
X1[1]=-math.sin(stateIn[2])*(2.0/2.0)
Y1[0]=math.sin(stateIn[2])*(5.0/2.0)
Y1[1]=math.cos(stateIn[2])*(5.0/2.0)
for j in range(0,2):
robot_corner[0][j]=stateIn[j]-X1[j]-Y1[j]
robot_corner[1][j]=stateIn[j]+X1[j]-Y1[j]
robot_corner[2][j]=stateIn[j]+X1[j]+Y1[j]
robot_corner[3][j]=stateIn[j]-X1[j]+Y1[j]
robot_axis[0][j] = robot_corner[1][j] - robot_corner[0][j]
robot_axis[1][j] = robot_corner[3][j] - robot_corner[0][j]
length[0]=robot_axis[0][0]*robot_axis[0][0]+robot_axis[0][1]*robot_axis[0][1]
length[1]=robot_axis[1][0]*robot_axis[1][0]+robot_axis[1][1]*robot_axis[1][1]
#print "robot cornor"
for i in range(0,4):
#print "("+str(robot_corner[i][0])+","+str(robot_corner[i][1])+")"
pass
for i in range(0,2):
for j in range(0,2):
robot_axis[i][j]=robot_axis[i][j]/float(length[j])
robot_orign[0]=robot_corner[0][0]*robot_axis[0][0]+ robot_corner[0][1]*robot_axis[0][1]
robot_orign[1]=robot_corner[0][0]*robot_axis[1][0]+ robot_corner[0][1]*robot_axis[1][1]
for i in range(0,7):
cf=True
obs_corner=np.zeros((4,2),dtype=np.float32)
obs_axis=np.zeros((2,2),dtype=np.float32)
obs_orign=np.zeros(2,dtype=np.float32)
X=np.zeros(2,dtype=np.float32)
Y=np.zeros(2,dtype=np.float32)
length2=np.zeros(2,dtype=np.float32)
X[0]=1.0*size/2.0
X[1]=0.0
Y[0]=0.0
Y[1]=1.0*size/2.0
for j in range(0,2):
obs_corner[0][j]=obc[i][j]-X[j]-Y[j]
obs_corner[1][j]=obc[i][j]+X[j]-Y[j]
obs_corner[2][j]=obc[i][j]+X[j]+Y[j]
obs_corner[3][j]=obc[i][j]-X[j]+Y[j]
obs_axis[0][j] = obs_corner[1][j] - obs_corner[0][j]
obs_axis[1][j] = obs_corner[3][j] - obs_corner[0][j]
length2[0]=obs_axis[0][0]*obs_axis[0][0]+obs_axis[0][1]*obs_axis[0][1]
length2[1]=obs_axis[1][0]*obs_axis[1][0]+obs_axis[1][1]*obs_axis[1][1]
for i1 in range(0,2):
for j1 in range(0,2):
obs_axis[i1][j1]=obs_axis[i1][j1]/float(length2[j1])
obs_orign[0]=obs_corner[0][0]*obs_axis[0][0]+ obs_corner[0][1]*obs_axis[0][1]
obs_orign[1]=obs_corner[0][0]*obs_axis[1][0]+ obs_corner[0][1]*obs_axis[1][1]
cf=overlap(robot_corner,robot_axis,robot_orign,obs_corner,obs_axis,obs_orign)
if cf==True:
return True
return False