-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainingModel.py
125 lines (95 loc) · 6.53 KB
/
trainingModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
This is the Entry point for Training the Machine Learning Model.
"""
# Doing the necessary imports
import os
from sklearn.model_selection import train_test_split
from data_ingestion import data_loader
from data_preprocessing import preprocessing
from data_preprocessing import clustering
from best_model_finder import tuner
from file_operations import file_methods
from application_logging import logger
class trainModel:
def __init__(self):
self.log_writer = logger.App_Logger()
if not os.path.isdir('Training_Logs'):
os.makedirs('Training_Logs')
self.file_object = open("Training_Logs/ModelTrainingLog.txt", 'a+')
self.log_writer.log(self.file_object, f"Created an instance of {__class__} class.")
self.file_object.close()
def trainingModel(self):
with open("Training_Logs/ModelTrainingLog.txt", 'a+') as self.file_object:
self.log_writer.log(self.file_object, 'Start of Training')
try:
# Getting the data from the source
self.log_writer.log(self.file_object, 'Start data ingestion.')
data_getter = data_loader.DataGetter(self.file_object, self.log_writer)
datagen = data_getter.get_data()
self.log_writer.log(self.file_object, 'Data ingestion completed.')
for data, filename in datagen():
filename = filename.split('.')[0] # redefine filename without the .csv part!
"""doing the data preprocessing"""
self.log_writer.log(self.file_object, f"Loaded data from {filename}.")
self.log_writer.log(self.file_object, "Initialize Preprocessor class.")
preprocessor = preprocessing.Preprocessor(self.file_object,self.log_writer)
# add RUL column
self.log_writer.log(self.file_object, "Adding remaining useful life column to data.")
data = preprocessor.add_remaining_useful_life(data)
# drop unit_nr and time_cycles
self.log_writer.log(self.file_object, "Dropping unit_nr and time_cycles column")
data = preprocessor.remove_columns(data, ['unit_nr', 'time_cycles'])
self.log_writer.log(self.file_object, "Dropping redundant setting columns.")
data = preprocessor.drop_redundant_settings(data)
self.log_writer.log(self.file_object, "Dropping sensor columns acc to data visualisation/eda.")
data = preprocessor.drop_sensor(data, filename)
self.log_writer.log(self.file_object, "Dropping columns with zero standard deviation.")
data = preprocessor.drop_columns_with_zero_std_deviation(data)
# impute null values
self.log_writer.log(self.file_object, "Checking data for null values.")
if preprocessor.is_null_present(data, filename):
self.log_writer.log(self.file_object,
"Data contains columns with null values, imputing null values")
data = preprocessor.impute_missing_values(data)
else:
self.log_writer.log(self.file_object, "No columns with null values found in data.")
X = data.drop(['RUL'], axis=1)
Y = data['RUL']
""" Applying the clustering approach"""
self.log_writer.log(self.file_object, "Initialise data clustering.")
kmeans = clustering.KMeansClustering(self.file_object,self.log_writer)
number_of_clusters = kmeans.elbow_plot(X, filename) # elbow plot
# Divide the data into clusters
X = kmeans.create_clusters(X,number_of_clusters, filename)
X['Labels'] = Y
# getting the unique clusters from our dataset
list_of_clusters = X['Cluster'].unique()
"""parsing all the clusters and looking for the best ML algorithm to fit on individual cluster"""
self.log_writer.log(self.file_object, "Dividing data into seperate clusters for training.")
for i in list_of_clusters:
cluster_data = X[X['Cluster'] == i] # filter the data for one cluster
# Prepare the feature and Label columns
cluster_features = cluster_data.drop(['Labels','Cluster'],axis=1)
cluster_label = cluster_data['Labels']
# splitting the data into training and test set for each cluster one by one
x_train, x_test, y_train, y_test = train_test_split(cluster_features, cluster_label,
test_size=1/3, random_state=355)
self.log_writer.log(self.file_object, f'Scaling cluster data for cluster {i}')
x_train = preprocessor.scaleData(x_train)
x_test = preprocessor.scaleData(x_test)
self.log_writer.log(self.file_object, f'Initialize model tuning for cluster {i}')
model_finder = tuner.Model_Finder(self.file_object, self.log_writer)
# getting the best model for each of the clusters
best_model_name, best_model = model_finder.get_best_model(x_train,y_train,x_test,y_test)
# saving the best model to the directory.
self.log_writer.log(self.file_object,
f"Model {best_model_name} selected for cluster {i}. Saving model.")
file_op = file_methods.File_Operation(self.file_object,self.log_writer, filename)
file_op.save_model(best_model,best_model_name+str(i))
self.log_writer.log(self.file_object, f'Training complete for Cluster {i}')
else:
self.log_writer.log(self.file_object, f'Training finished for the data {filename}')
else:
self.log_writer.log(self.file_object, "Training completed for all datasets.")
except Exception as e:
self.log_writer.log(self.file_object, '!! Unsuccessful End of Training !!')