-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathmodel.py
178 lines (157 loc) · 8.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding: UTF-8
'''''''''''''''''''''''''''''''''''''''''''''''''''''
file name: model.py
create time: 2017年06月25日 星期日 10时47分48秒
author: Jipeng Huang
e-mail: [email protected]
github: https://github.com/hjptriplebee
'''''''''''''''''''''''''''''''''''''''''''''''''''''
from config import *
class MODEL:
"""model class"""
def __init__(self, trainData):
self.trainData = trainData
def buildModel(self, wordNum, gtX, hidden_units = 128, layers = 2):
"""build rnn"""
with tf.variable_scope("embedding"): #embedding
embedding = tf.get_variable("embedding", [wordNum, hidden_units], dtype = tf.float32)
inputbatch = tf.nn.embedding_lookup(embedding, gtX)
basicCell = tf.contrib.rnn.BasicLSTMCell(hidden_units, state_is_tuple = True)
stackCell = tf.contrib.rnn.MultiRNNCell([basicCell] * layers)
initState = stackCell.zero_state(np.shape(gtX)[0], tf.float32)
outputs, finalState = tf.nn.dynamic_rnn(stackCell, inputbatch, initial_state = initState)
outputs = tf.reshape(outputs, [-1, hidden_units])
with tf.variable_scope("softmax"):
w = tf.get_variable("w", [hidden_units, wordNum])
b = tf.get_variable("b", [wordNum])
logits = tf.matmul(outputs, w) + b
probs = tf.nn.softmax(logits)
return logits, probs, stackCell, initState, finalState
def train(self, reload=True):
"""train model"""
print("training...")
gtX = tf.placeholder(tf.int32, shape=[batchSize, None]) # input
gtY = tf.placeholder(tf.int32, shape=[batchSize, None]) # output
logits, probs, a, b, c = self.buildModel(self.trainData.wordNum, gtX)
targets = tf.reshape(gtY, [-1])
#loss
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets],
[tf.ones_like(targets, dtype=tf.float32)])
globalStep = tf.Variable(0, trainable=False)
addGlobalStep = globalStep.assign_add(1)
cost = tf.reduce_mean(loss)
trainableVariables = tf.trainable_variables()
grads, a = tf.clip_by_global_norm(tf.gradients(cost, trainableVariables), 5) # prevent loss divergence caused by gradient explosion
learningRate = tf.train.exponential_decay(learningRateBase, global_step=globalStep,
decay_steps=learningRateDecayStep, decay_rate=learningRateDecayRate)
optimizer = tf.train.AdamOptimizer(learningRate)
trainOP = optimizer.apply_gradients(zip(grads, trainableVariables))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
if not os.path.exists(checkpointsPath):
os.mkdir(checkpointsPath)
if reload:
checkPoint = tf.train.get_checkpoint_state(checkpointsPath)
# if have checkPoint, restore checkPoint
if checkPoint and checkPoint.model_checkpoint_path:
saver.restore(sess, checkPoint.model_checkpoint_path)
print("restored %s" % checkPoint.model_checkpoint_path)
else:
print("no checkpoint found!")
for epoch in range(epochNum):
X, Y = self.trainData.generateBatch()
epochSteps = len(X) # equal to batch
for step, (x, y) in enumerate(zip(X, Y)):
a, loss, gStep = sess.run([trainOP, cost, addGlobalStep], feed_dict = {gtX:x, gtY:y})
print("epoch: %d, steps: %d/%d, loss: %3f" % (epoch + 1, step + 1, epochSteps, loss))
if gStep % saveStep == saveStep - 1: # prevent save at the beginning
print("save model")
saver.save(sess, os.path.join(checkpointsPath, type), global_step=gStep)
def probsToWord(self, weights, words):
"""probs to word"""
prefixSum = np.cumsum(weights) #prefix sum
ratio = np.random.rand(1)
index = np.searchsorted(prefixSum, ratio * prefixSum[-1]) # large margin has high possibility to be sampled
return words[index[0]]
def test(self):
"""write regular poem"""
print("genrating...")
gtX = tf.placeholder(tf.int32, shape=[1, None]) # input
logits, probs, stackCell, initState, finalState = self.buildModel(self.trainData.wordNum, gtX)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
checkPoint = tf.train.get_checkpoint_state(checkpointsPath)
# if have checkPoint, restore checkPoint
if checkPoint and checkPoint.model_checkpoint_path:
saver.restore(sess, checkPoint.model_checkpoint_path)
print("restored %s" % checkPoint.model_checkpoint_path)
else:
print("no checkpoint found!")
exit(1)
poems = []
for i in range(generateNum):
state = sess.run(stackCell.zero_state(1, tf.float32))
x = np.array([[self.trainData.wordToID['[']]]) # init start sign
probs1, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
word = self.probsToWord(probs1, self.trainData.words)
poem = ''
sentenceNum = 0
while word not in [' ', ']']:
poem += word
if word in ['。', '?', '!', ',']:
sentenceNum += 1
if sentenceNum % 2 == 0:
poem += '\n'
x = np.array([[self.trainData.wordToID[word]]])
#print(word)
probs2, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
word = self.probsToWord(probs2, self.trainData.words)
print(poem)
poems.append(poem)
return poems
def testHead(self, characters):
"""write head poem"""
print("genrating...")
gtX = tf.placeholder(tf.int32, shape=[1, None]) # input
logits, probs, stackCell, initState, finalState = self.buildModel(self.trainData.wordNum, gtX)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
checkPoint = tf.train.get_checkpoint_state(checkpointsPath)
# if have checkPoint, restore checkPoint
if checkPoint and checkPoint.model_checkpoint_path:
saver.restore(sess, checkPoint.model_checkpoint_path)
print("restored %s" % checkPoint.model_checkpoint_path)
else:
print("no checkpoint found!")
exit(1)
flag = 1
endSign = {-1: ",", 1: "。"}
poem = ''
state = sess.run(stackCell.zero_state(1, tf.float32))
x = np.array([[self.trainData.wordToID['[']]])
probs1, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
for word in characters:
if self.trainData.wordToID.get(word) == None:
print("胖虎不认识这个字,你真是文化人!")
exit(0)
flag = -flag
while word not in [']', ',', '。', ' ', '?', '!']:
poem += word
x = np.array([[self.trainData.wordToID[word]]])
probs2, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
word = self.probsToWord(probs2, self.trainData.words)
poem += endSign[flag]
# keep the context, state must be updated
if endSign[flag] == '。':
probs2, state = sess.run([probs, finalState],
feed_dict={gtX: np.array([[self.trainData.wordToID["。"]]]), initState: state})
poem += '\n'
else:
probs2, state = sess.run([probs, finalState],
feed_dict={gtX: np.array([[self.trainData.wordToID[","]]]), initState: state})
print(characters)
print(poem)
return poem