-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
537 lines (484 loc) · 21.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# models.py
#
# Contains both the DL model and the DL-ML-Hybrid model.
# See main() function for options.
#
# Written by Pegah Mavaie & Larry Holder, Washington State University
import os
import sys
import argparse
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report
from sklearn.model_selection import KFold
import xgboost as xgb
from keras import backend as K
from keras.models import Model, Sequential, load_model
from keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from keras.optimizers import Adam
from keras.layers import Flatten, Activation, Dropout, Dense, Conv1D, MaxPooling1D, BatchNormalization
from tensorflow.keras.utils import to_categorical
from Bio import SeqIO
from pysster.One_Hot_Encoder import One_Hot_Encoder
import pysster.utils as utils
from pysster.Motif import Motif
# ----- Global variables -----
# Dataset file names to be used for training and testing (below is only example)
DATASETS = [
#'GSE155922_jetfuel.kidney.results.csv',
#'GSE157539_kidney.dmr.results.csv',
#'GSE158086_kidney.dmr.results.csv',
#'GSE158254_kidney.dmr.results.csv',
'GSE163412_kidney.dmr.results.csv'
]
# Header used in CSV file for column containing p-value, i.e., Prob(non-DMR)
P_VALUE_HEADER = 'edgeR.p.value'
# DATADIR specifies path containing all datasets
DATADIR = './data/'
# Path to store kernel visualization images
OUTPUT_DIR = './output/'
# File name to store trained model
MODEL_LOG_FILE = 'model_log'
# Prefix on the genome sequence FASTA file names (one file per chromosome)
RN_PREFIX = 'Rattus_norvegicus.Rnor_6.0.dna.chromosome.'
# List of chromosomes to draw from for training and testing sets: ['1','2',...,'20','X','Y'] for rat
CHROMOSOMES = ['1']
# A threshold for choosing a p-value for sampling DMRs: edgeR.p.value < threshold_dmr
THRESHOLD_DMR = 1e-5
# A threshold for choosing a p-value for sampling non-DMRs: edgeR.p.value > (1 - threshold_ndmr)
THRESHOLD_NDMR = 1e-5
# Threshold on fraction of DNA sequence that consists of CGs to be a CG island
THRESHOLD_CG_ISLAND = 0.2
# Input_shape is used for the "input_shape" parameter of the first layer of DL network.
# It is a 2D array where the first element shows the length of the input sequence, and
# the second element is the number of characters used for the representation (one-hot encoding).
INPUT_SHAPE = [1000,5]
def extract_dna_sequences(dna_seq, starts, seq_len):
"""
Extract sequences from dna_seq of length seq_len according to starts
Parameters
----------
@param dna_seq: DNA sequence
@param starts: Start points for each sequence
@param seq_len: Length of each sequecne
"""
sequences = []
for start in starts:
sequence = dna_seq.seq[int(start):int(start + seq_len)]
if (len(sequence) == seq_len):
sequences.append(sequence)
return sequences
def create_train_test_index(data_seq, labels, test_rate):
"""
Divide data into training and testing sets according to test_rate.
Parameters
----------
@param data_seq: data samples
@param labels: labels for the dataset
@param test_rate = fraction of data for testing
"""
# Create a set of random indices
shuffled_indices = np.random.permutation (len (data_seq))
test_set_size = int (len (data_seq) * test_rate)
test_set_indices = shuffled_indices[:test_set_size]
train_set_indices = shuffled_indices[test_set_size:]
# Split training data samples
train_X = data_seq[train_set_indices]
train_ground = labels[train_set_indices]
# Split testing samples
test_X = data_seq[test_set_indices]
test_ground = labels[test_set_indices]
return train_X, train_ground, test_X, test_ground
def build_dl_model(input_shape, nb_classes=2):
"""
Create a deep learning architecture, compile and return the model
Parameters
----------
@param input_shape: The tensor shape fed to first layer
@param nb_classes: number of classes
"""
model = Sequential ()
# Block 1
model.add (Conv1D (filters=32, kernel_size=20, padding='same', input_shape=input_shape))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (Conv1D (filters=32, kernel_size=20, padding='valid'))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (MaxPooling1D (pool_size=2))
model.add (Dropout (0.45))
# Block 2
model.add (Conv1D (filters=64, kernel_size=20, padding='same'))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (Conv1D (filters=64, kernel_size=20, padding='valid'))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (MaxPooling1D (pool_size=2))
model.add (Dropout (0.45))
# Dense layer
model.add (Flatten ())
model.add (Dense (256))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (Dropout (0.5))
model.add (Dense (128))
model.add (BatchNormalization ())
model.add (Activation ('relu'))
model.add (Dropout (0.5))
model.add (Dense (nb_classes))
model.add (Activation ('sigmoid'))
opt = Adam (learning_rate=0.01, decay=0.0005)
model.compile (loss='binary_crossentropy', optimizer=opt, metrics=['binary_accuracy'])
return model
def feature_extractor_from_dl_model(model, data_seq, layer_num):
"""
Create a new representation of the data by extracting the output of the given DL layer_num
Parameters
----------
@param model: DL model
@param data_seq: DNA sequences for extracting DL representation
@param layer_num: the output of this layer is used as feature representation
"""
# with a Sequential model
get_layer_output = K.function ([model.layers[0].input], [model.layers[layer_num].output])
layer_outs = get_layer_output ([data_seq])[0]
# change the data from list into numpy format
out_array = np.array (layer_outs)
# We can use flatten only if we use a non-dense layer output
out_array = out_array.flatten ()
# reshape the output into a 2d-array
out_array = np.reshape (out_array, (data_seq.shape[0], -1))
return out_array
def fit_ml_classifier(out_array, labels, classifier_case='XGB'):
"""
Create a non-DL classifier for the classification task, use classifer_case to choose between RF and XGB
The classifier is fit given the data and labels
Parameters
----------
@param out_array: Data with DL representation for training ML model
@param labels: labels
@param classifier_cases: 'XGB': XGBoost classifier 'RF': RandomForest classifier
"""
if classifier_case == 'XGB':
print ('ML classifier: XGB')
learner = xgb.XGBClassifier (use_label_encoder=False)
learner.fit (out_array, labels)
if classifier_case == 'RF':
print ('ML classifier: RF')
learner = RandomForestClassifier ()
learner.fit (out_array, labels)
return learner
def extract_starts_from_dataset(file_path, chrm_index, threshold, dmrs):
"""
Extract the start of DMRs or non-DMRs from the data in file_path
for given chromosome based on the threshold.
Parameters
----------
@param file_path: file path for extracting indices
@param chrm_index: chromosome for which to extract indices
@param threshold: threshold for choosing DMRs or non-DMRs
@param dmrs: A boolean parameter for select DMRs (True) or non-DMRs (False)
"""
global P_VALUE_HEADER
# Read the dataset
pdData = pd.read_csv (file_path, dtype={'chr':'string'}, index_col=False)
pdData = pdData[pdData['chr'] == chrm_index]
# Extract region starts based on whether we want DMR or non-DMRs samples
if dmrs:
starts = pdData.loc[pdData[P_VALUE_HEADER] <= threshold]['start']
else:
starts = pdData.loc[pdData[P_VALUE_HEADER] >= (1 - threshold)]['start']
return np.array(starts)
# TODO: K.gradients not supported
def optimize_input(model, layer_name, node_index, input_data, lr, steps):
model_input = model.layers[0].input
loss = K.max(model.get_layer(layer_name).output[...,node_index])
grads = K.gradients(loss, model_input)[0]
grads = K.l2_normalize(grads, axis = 1)
iterate = K.function([model_input, K.learning_phase()], [loss, grads])
for _ in range(steps):
loss_value, grads_value = iterate([input_data, 0])
input_data += grads_value * lr
return input_data[0], loss_value > 2
# TODO
def get_optimized_input(model, data, layer_name, node_index, boundary, lr, steps, colors_sequence, colors_structure):
global INPUT_SHAPE
for _attempt in range(5):
input_data = np.random.uniform(-boundary, +boundary, (1, INPUT_SHAPE[0], INPUT_SHAPE[1]))
input_data, success = optimize_input(model, layer_name, node_index, input_data, lr, steps)
if success: break
if not success:
print("Warning: loss did not converge for node {} in layer '{}'".format(node_index, layer_name))
input_data = np.apply_along_axis(utils.softmax, 1, input_data)
if not data.is_rna:
return [Motif(data.one_hot_encoder.alphabet, pwm = input_data).plot(colors_sequence, scale=0.25)]
# TODO
def visualize_optimized_inputs(model, data, layer_name, output_file, bound=0.1, lr=0.02, steps=600, colors_sequence={'A': '#00CC00', 'C': '#0000CC', 'G': '#FFB300', 'T': '#CC0000'}, colors_structure={}, nodes=None):
if nodes == None:
nodes = list (range (model.get_layer (layer_name).output_shape[-1]))
motif_plots = []
for node in nodes:
#print ("Optimize node {}...".format (node))
motif_plots += get_optimized_input (model, data, layer_name, node, bound, lr, steps, colors_sequence, colors_structure)
utils.combine_images (motif_plots, output_file)
def deciding_ndmrs(ndmrs, dna_sequence, case_criteria = 1):
"""
Returns the set of non-dmr starts in the genome (dna_sequence) according to the case-criteria,
which determines which non-dmrs to include from given threshold-based ndmrs and regions which
have no-CGs or are CG islands.
Parameters
----------
@param ndmrs: threshold-based non-DMRs for a chromosome
@param dnq_sequence: DNA sequence for the chromosome
@param case_criteria:
case_criteria = 1 : threshold-based non-DMRs
case_criteria = 2 : noCGs and CG-islands
case_criteria = 3 : noCGs and CG-islands and threshold-based non-DMRs
"""
global INPUT_SHAPE, THRESHOLD_CG_ISLAND
region_len = INPUT_SHAPE[0]
cg_island_threshold = int(THRESHOLD_CG_ISLAND * region_len)
if case_criteria == 1:
return ndmrs
num_regions = len(dna_sequence) // INPUT_SHAPE[0]
no_cgs = []
cg_islands = []
for i in range(num_regions):
start = i * INPUT_SHAPE[0]
region_seq = dna_sequence[start:(start + INPUT_SHAPE[0])]
num_cgs = region_seq.count("CG")
if num_cgs == 0:
no_cgs.append(start+1)
if num_cgs > cg_island_threshold:
cg_islands.append(start+1)
cg_ndmrs = np.union1d(np.array(no_cgs),np.array(cg_islands))
if case_criteria == 2:
return cg_ndmrs
return np.union1d(ndmrs,cg_ndmrs)
def create_one_hot_encoder_sequences(dna_seqs):
"""
One-hot encoding representation of DNA samples
Parameters
----------
@param dna_seqs: DNA sequences
"""
one_hot = One_Hot_Encoder ("ACGTN")
one_hot_data = np.zeros ((len (dna_seqs), INPUT_SHAPE[0], INPUT_SHAPE[1]))
for i in range (0, len(dna_seqs)):
x = one_hot.encode (dna_seqs[i])
one_hot_data[i] = x
return one_hot_data
def create_data_and_labels(chrm_index):
global DATASETS, DATADIR, THRESHOLD_DMR, THRESHOLD_NDMR, LEAST_SET
"""
Create data and labels for the given chromosome.
"""
print('Generating data for chromosome ' + chrm_index + '...')
# Determine DMRs as the union of DMRs in each dataset
dmrs = extract_starts_from_dataset (DATADIR + DATASETS[0], chrm_index, THRESHOLD_DMR, True)
for dataset in DATASETS[1:]:
new_dmrs = extract_starts_from_dataset (DATADIR + dataset, chrm_index, THRESHOLD_DMR, True)
dmrs = np.union1d(dmrs, new_dmrs)
# Determine non-DMRs as the intersection of non-DMRs in each dataset
ndmrs = extract_starts_from_dataset (DATADIR + DATASETS[0], chrm_index, THRESHOLD_NDMR, False)
for dataset in DATASETS[1:]:
new_ndmrs = extract_starts_from_dataset (DATADIR + dataset, chrm_index, THRESHOLD_NDMR, False)
ndmrs = np.intersect1d(ndmrs, new_ndmrs)
# Parse through the specific chromosome files to obtain the DNA sequences
records = SeqIO.parse (DATADIR + RN_PREFIX + chrm_index + '.fa', "fasta")
first_rec = list (records)[0]
# Determine final set of non-dmrs (starts of regions)
ndmrs = deciding_ndmrs(ndmrs, first_rec.seq)
# Extract DNA sequences for DMRs and non-DMRs
dmr_seqs = extract_dna_sequences (first_rec, dmrs, INPUT_SHAPE[0])
ndmr_seqs = extract_dna_sequences (first_rec, ndmrs, INPUT_SHAPE[0])
# Convert to one hot encoding
dmr_data = create_one_hot_encoder_sequences (dmr_seqs)
ndmr_data = create_one_hot_encoder_sequences (ndmr_seqs)
# Stack the data on top of one another
labels = np.concatenate ((np.zeros (len (ndmr_data)), np.ones (len (dmr_data))))
data = np.concatenate ((np.array (ndmr_data), np.array (dmr_data)))
return data, labels
def visualization_for_a_node(data, labels, model, layer_name="conv1d_2"):
if not os.path.isdir(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
f1 = open(OUTPUT_DIR + "output_positive.fasta", 'w')
f2 = open(OUTPUT_DIR + "output_negative.fasta", 'w')
for i in range(0, len(data)):
dna_seq = ''.join(['ACGTN'[k] for k in np.argmax(data[i], axis=1)])
if labels[i] == 1:
f1.write(">1 \n")
f1.write(dna_seq + "\n")
else:
f2.write(">1 \n")
f2.write(dna_seq + "\n")
f1.close()
f2.close()
from pysster.Data import Data
from pysster.Model import Model
pysster_data = Data([OUTPUT_DIR + 'output_negative.fasta', OUTPUT_DIR + 'output_positive.fasta'], "ACGTN")
visualize_optimized_inputs(model, pysster_data, layer_name, OUTPUT_DIR + 'pes_conv1.png', bound=0.4)
def fit_dl_model(train_X, train_ground, batch_size=64, nb_classes=2, nb_epoch=30):
global INPUT_SHAPE, OUTPUT_DIR, MODEL_LOG_FILE
# Create the model and fit it with the data
model = build_dl_model (INPUT_SHAPE, nb_classes)
reduce_lr = ReduceLROnPlateau ('val_loss', 0.5, 5, verbose=0)
stopper = EarlyStopping ('val_loss', patience=5)
checkpoints = ModelCheckpoint (OUTPUT_DIR + MODEL_LOG_FILE, "val_loss", save_best_only=True)
callbacks = [reduce_lr, stopper, checkpoints]
train_ground_cat = to_categorical (train_ground, num_classes=nb_classes)
model.fit (train_X, train_ground_cat, batch_size, validation_split=0.2, epochs=nb_epoch, shuffle=True, callbacks=callbacks)
return model
def evaluate_model(model, out_array, test_ground):
"""
Evaluate the performance of the model
Parameters
----------
@param model: The trained model
@param out_array: testing data
@param test_ground: testing label
"""
prediction = model.predict (out_array)
if (not np.isscalar(prediction[0])):
prediction = np.argmax (prediction, axis=1)
print(classification_report(test_ground, prediction))
def train_dl_model(data_seq, labels, split=0.2):
"""
Train and evaluate a dl model
Parameters
----------
@param labels: labels
@param data: whole dataset
"""
train_X, train_ground, test_X, test_ground = create_train_test_index (data_seq, labels, split)
# Create the model and fit it with the data
model = fit_dl_model(train_X, train_ground)
evaluate_model(model, test_X, test_ground)
def train_hybrid_model(data_seq, labels, layer_num=5, split=0.2):
"""
Train and evaluate a hybrid model
Parameters
----------
@param data_seq: whole dataset of DNA sequences
@param labels: labels
@param layer_num: layer from which to extract features
"""
train_X, train_ground, test_X, test_ground = create_train_test_index (data_seq, labels, split)
# Create the model and fit it with the data
model = fit_dl_model(train_X, train_ground)
# Redefine the feature representation for feeding to ML classifier
out_array = feature_extractor_from_dl_model (model, train_X, layer_num)
# Train an XGB
xgb_classifier = fit_ml_classifier (out_array, train_ground, classifier_case='XGB')
out_array = feature_extractor_from_dl_model (model, test_X, layer_num)
evaluate_model(xgb_classifier, out_array, test_ground)
def dl_kfold_cross_validation(data, labels, folds=5):
accuracy_list = []
f1_score_list = []
precision_list = []
recall_list = []
kf = KFold(n_splits=folds, shuffle=True)
fold_num = 0
for train_index, test_index in kf.split(data):
fold_num += 1
print('Fold ' + str(fold_num) + ' of ' + str(folds))
train_X = data[train_index]
test_X = data[test_index]
train_ground = labels[train_index]
test_ground = labels[test_index]
model = fit_dl_model(train_X, train_ground)
# Evaluate the performance of the model
prediction = model.predict (test_X)
prediction = np.argmax (prediction, axis=1)
accuracy_list.append (accuracy_score (test_ground, prediction))
f1_score_list.append (f1_score (test_ground, prediction))
precision_list.append (precision_score (test_ground, prediction))
recall_list.append (recall_score (test_ground, prediction))
print ('accuracy for DL: ', sum (accuracy_list) / len (accuracy_list))
print ('F1 score for DL: ', sum (f1_score_list) / len (accuracy_list))
print ('precision DL: ', sum (precision_list) / len (accuracy_list))
print ('recall for DL: ', sum (recall_list) / len (accuracy_list))
def hybrid_kfold_cross_validation(data, labels, folds=5, layer_num=5):
accuracy_list = []
f1_score_list = []
precision_list = []
recall_list = []
kf = KFold(n_splits=folds, shuffle=True)
fold_num = 0
for train_index, test_index in kf.split(data):
fold_num +=1
print('Fold ' + str(fold_num) + ' of ' + str(folds))
train_X = data[train_index]
test_X = data[test_index]
train_ground = labels[train_index]
test_ground = labels[test_index]
model = fit_dl_model(train_X, train_ground)
# Redefine the feature representation for feeding to ML classifier
out_array = feature_extractor_from_dl_model (model, train_X, layer_num)
# Train an XGB
xgb_classifier = fit_ml_classifier (out_array, train_ground, classifier_case='XGB')
out_array = feature_extractor_from_dl_model (model, test_X, layer_num)
# Evaluate the performance of the model
prediction = xgb_classifier.predict (out_array)
accuracy_list.append (accuracy_score (test_ground, prediction))
f1_score_list.append (f1_score (test_ground, prediction))
precision_list.append (precision_score (test_ground, prediction))
recall_list.append (recall_score (test_ground, prediction))
print ('accuracy for Hybrid: ', sum (accuracy_list) / len (accuracy_list))
print ('F1 score for Hybrid: ', sum (f1_score_list) / len (accuracy_list))
print ('precision Hybrid: ', sum (precision_list) / len (accuracy_list))
print ('recall for Hybrid: ', sum (recall_list) / len (accuracy_list))
def create_dataset():
data, labels = create_data_and_labels(CHROMOSOMES[0])
for chr in CHROMOSOMES[1:]:
data1, labels1 = create_data_and_labels(chr)
data = np.concatenate((data, data1))
labels = np.concatenate((labels, labels1))
data_seq = data.astype (float)
labels = labels.astype (int)
# Check that #pos_egs and #neg_egs are both non-zero
a, c = np.unique (labels, return_counts=True)
print ('label distribution: ', a, c)
if len(a) == 1:
print(' only one label represented...exiting.')
sys.exit()
return data_seq, labels
def main():
global CHROMOSOMES, OUTPUT_DIR, MODEL_LOG_FILE
# Process arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model', dest='model', type=str, choices=['DL','hybrid'])
parser.add_argument('--task', dest='task', type=str, choices=['train','test','kfold'])
parser.add_argument('--folds', dest='folds', type=int, default=5)
parser.add_argument('--visualize', dest='visualize', default=False, action='store_true')
args = parser.parse_args()
if args.model == 'hybrid' and args.task == 'train':
data, labels = create_dataset()
train_hybrid_model(data, labels)
elif args.model == 'hybrid' and args.task == 'test':
model = load_model(OUTPUT_DIR + MODEL_LOG_FILE)
data, labels = create_dataset()
evaluate_model(model, data, labels)
elif args.model == 'hybrid' and args.task == 'kfold':
data, labels = create_dataset()
hybrid_kfold_cross_validation(data, labels, folds=args.folds)
elif args.model == 'DL' and args.task == 'train':
data, labels = create_dataset()
train_dl_model(data, labels)
elif args.model == 'DL' and args.task == 'test':
model = load_model(OUTPUT_DIR + MODEL_LOG_FILE)
data, labels = create_dataset()
evaluate_model(model, data, labels)
elif args.model == 'DL' and args.task == 'kfold':
data, labels = create_dataset()
dl_kfold_cross_validation(data, labels, folds=args.folds)
elif args.visualize:
model = load_model(OUTPUT_DIR + MODEL_LOG_FILE)
data, labels = create_dataset()
visualization_for_a_node(data, labels, model)
else:
parser.print_help()
if __name__ == "__main__":
main()