-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path170824_logi_cluster
239 lines (198 loc) · 8.27 KB
/
170824_logi_cluster
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
############################## data_set 원본 데이터 ##############################
setwd('C:/Users/User/Desktop/bigcontest/data')
data_set <- read.table('Data_set.csv', header = T, sep = ',', stringsAsFactors= F)
data_na = data_set
# OCCP_NAME_G : '*' -> NA
data_na$OCCP_NAME_G[data_na$OCCP_NAME_G == '*'] <- NA
# MATE_OCCP_NAME_G : '*' -> NA
data_na$MATE_OCCP_NAME_G[data_na$MATE_OCCP_NAME_G == '*'] <- NA
# AGE : '*' -> NA
data_na$AGE[data_na$AGE == '*'] <- NA
# SEX : '*' -> NA
data_na$SEX[data_na$SEX == '*'] <- NA
# LAST_CHLD_AGE : 'NULL' -> NA
data_na$LAST_CHLD_AGE[which(data_na$LAST_CHLD_AGE == 'NULL')] <- NA
data_narm = na.omit(data_na)
############################## data_factor : 범주화 변수 변환 ##############################
data_factor <- data_narm
#클러스터링 변수 선택(범주형 중 수준 축소가 필요한 경우)
SCI <- cbind(data_factor$TOT_LNIF_AMT, data_factor$TOT_CLIF_AMT,
data_factor$BNK_LNIF_AMT, data_factor$CPT_LNIF_AMT,
data_factor$CB_GUIF_AMT)
HAN <- cbind(data_factor$CUST_JOB_INCM, data_factor$HSHD_INFR_INCM,
data_factor$LAST_CHLD_AGE, data_factor$MATE_JOB_INCM, data_factor$TOT_CRLN_AMT,
data_factor$TOT_REPY_AMT, data_factor$STLN_REMN_AMT, data_factor$LT1Y_STLN_AMT,
data_factor$GDINS_MON_PREM, data_factor$SVINS_MON_PREM, data_factor$FMLY_GDINS_MNPREM,
data_factor$FMLY_SVINS_MNPREM, data_factor$MAX_MON_PREM, data_factor$TOT_PREM,
data_factor$FMLY_TOT_PREM, data_factor$FYCM_PAID_AMT, data_factor$FMLY_CLAM_CNT, data_factor$AGE)
SKT <- cbind(data_factor$AVG_CALL_TIME,
data_factor$AVG_CALL_FREQ, data_factor$ARPU,
data_factor$MON_TLFE_AMT, data_factor$MOBL_FATY_PRC,
data_factor$NUM_DAY_SUSP, data_factor$CRMM_OVDU_AMT,
data_factor$LT1Y_MXOD_AMT, data_factor$MOBL_PRIN)
#cluster값으로 변환한 변수들을 data_Train에 삽입
#k$cluster 값을 할당하여 변수를 10개 범주로 변환
#SCI에 속하는 변수 중, cluster가 필요한 변수를 변환함. 변환한 각 변수를 SCI[,i]에 저장
for (i in 1:5)
{
SCI[,i] = kmeans(SCI[,i], 10)$cluster
}
#HAN에 속하는 변수 중, cluster가 필요한 변수를 변환함. 변환한 각 변수를 HAN[,i]에 저장
for (i in 1:18)
{
HAN[,i] = kmeans(HAN[,i], 10)$cluster
}
#SKT에 속하는 변수 중, cluster가 필요한 변수를 변환함. 변환한 각 변수를 SKT[,i]에 저장
for (i in 1:9)
{
SKT[,i] = kmeans(SKT[,i], 10)$cluster
}
#data_Train에서 각 변수의 인덱스 파악
names(data_factor)
SCI_num = c(7, 8, 9, 10, 16)
HAN_num = c(18, 19, 22, 24, 27, 28, 37, 38, 40, 41, 42, 43, 44, 45, 46, 50, 51, 53)
SKT_num = c(55, 56, 58, 59, 61, 63, 64, 66, 69)
j = 1
for (i in SCI_num)
{
data_factor[,i] = SCI[,j]
j = j + 1
print(j)
}
j = 1
for (i in HAN_num)
{
data_factor[,i] = HAN[,j]
j = j + 1
print(j)
}
j = 1
for (i in SKT_num)
{
data_factor[,i] = SKT[,j]
j = j + 1
print(j)
}
#범주화
data_factor$TOT_LNIF_AMT <- as.factor(data_factor$TOT_LNIF_AMT)
data_factor$TOT_CLIF_AMT <- as.factor(data_factor$TOT_CLIF_AMT)
data_factor$BNK_LNIF_AMT <- as.factor(data_factor$BNK_LNIF_AMT)
data_factor$CPT_LNIF_AMT <- as.factor(data_factor$CPT_LNIF_AMT)
data_factor$CRDT_OCCR_MDIF <- as.factor(data_factor$CRDT_OCCR_MDIF)
data_factor$SPTCT_OCCR_MDIF <- as.factor(data_factor$SPTCT_OCCR_MDIF)
data_factor$CTCD_OCCR_MDIF <- as.factor(data_factor$CTCD_OCCR_MDIF)
data_factor$CB_GUIF_AMT <- as.factor(data_factor$CB_GUIF_AMT)
data_factor$CUST_JOB_INCM <- as.factor(data_factor$CUST_JOB_INCM)
data_factor$HSHD_INFR_INCM <- as.factor(data_factor$HSHD_INFR_INCM)
data_factor$LAST_CHLD_AGE <- as.factor(data_factor$LAST_CHLD_AGE)
data_factor$MATE_JOB_INCM <- as.factor(data_factor$MATE_JOB_INCM)
data_factor$TOT_CRLN_AMT <- as.factor(data_factor$TOT_CRLN_AMT)
data_factor$TOT_REPY_AMT <- as.factor(data_factor$TOT_REPY_AMT)
data_factor$STRT_CRDT_GRAD <- as.factor(data_factor$STRT_CRDT_GRAD)
data_factor$LTST_CRDT_GRAD <- as.factor(data_factor$LTST_CRDT_GRAD)
data_factor$LT1Y_PEOD_RATE <- as.factor(data_factor$LT1Y_PEOD_RATE)
data_factor$STLN_REMN_AMT <- as.factor(data_factor$STLN_REMN_AMT)
data_factor$LT1Y_STLN_AMT <- as.factor(data_factor$LT1Y_STLN_AMT)
data_factor$LT1Y_SLOD_RATE <- as.factor(data_factor$LT1Y_SLOD_RATE)
data_factor$GDINS_MON_PREM <- as.factor(data_factor$GDINS_MON_PREM)
data_factor$SVINS_MON_PREM <- as.factor(data_factor$SVINS_MON_PREM)
data_factor$FMLY_GDINS_MNPREM <- as.factor(data_factor$FMLY_GDINS_MNPREM)
data_factor$FMLY_SVINS_MNPREM <- as.factor(data_factor$FMLY_SVINS_MNPREM)
data_factor$MAX_MON_PREM <- as.factor(data_factor$MAX_MON_PREM)
data_factor$TOT_PREM <- as.factor(data_factor$TOT_PREM)
data_factor$FMLY_TOT_PREM <- as.factor(data_factor$FMLY_TOT_PREM)
data_factor$FYCM_PAID_AMT <- as.factor(data_factor$FYCM_PAID_AMT)
data_factor$ARPU <- as.factor(data_factor$ARPU)
data_factor$MON_TLFE_AMT <- as.factor(data_factor$MON_TLFE_AMT)
data_factor$MOBL_FATY_PRC <- as.factor(data_factor$MOBL_FATY_PRC)
data_factor$CRMM_OVDU_AMT <- as.factor(data_factor$CRMM_OVDU_AMT)
data_factor$LT1Y_MXOD_AMT <- as.factor(data_factor$LT1Y_MXOD_AMT)
data_factor$MOBL_PRIN <- as.factor(data_factor$MOBL_PRIN)
# 범주화(순서존재NO)
data_factor$TARGET <- as.factor(data_factor$TARGET)
data_factor$OCCP_NAME_G <- as.factor(data_factor$OCCP_NAME_G)
data_factor$MATE_OCCP_NAME_G <- as.factor(data_factor$MATE_OCCP_NAME_G)
data_factor$SEX <- as.factor(data_factor$SEX)
data_factor$TEL_MBSP_GRAD <- as.factor(data_factor$TEL_MBSP_GRAD)
data_factor$CBPT_MBSP_YN <- as.factor(data_factor$CBPT_MBSP_YN)
data_factor$PAYM_METD <- as.factor(data_factor$PAYM_METD)
data_factor$LINE_STUS <- as.factor(data_factor$LINE_STUS)
# 범주화(날짜)
data_factor$MIN_CNTT_DATE <- as.factor(data_factor$MIN_CNTT_DATE)
data_factor$TEL_CNTT_QTR <- as.factor(data_factor$TEL_CNTT_QTR)
#동일한 비율로 타겟 변수 추출
data_od = data_factor[which(data_factor$TARGET == 1),]
data_rp = data_factor[which(data_factor$TARGET == 0),]
set.seed(123)
randomNumber_od = sample(1:4243, size = 3395, replace = F)
randomNumber_rp = sample(1:94801, size = 3395, replace = F)
data_od_train = data_od[randomNumber_od,]
data_rp_train = data_rp[randomNumber_rp,]
data_od_test = data_od[-randomNumber_od,]
data_rp_test = data_rp[-randomNumber_rp,]
data_Test = rbind(data_od_test, data_rp_test)
data_Train = rbind(data_od_train, data_rp_train)
#모델 생성 및 예측
data_Train2 = subset(data_Train, select = -c(CUST_ID, MIN_CNTT_DATE, ARPU, TEL_CNTT_QTR))
data_Test2 = subset(data_Test, select = -c(CUST_ID, MIN_CNTT_DATE, ARPU, TEL_CNTT_QTR))
model = glm(TARGET ~.,data = data_Train2, family = binomial)
a = summary(model)$coefficients[,4]
b=c()
for (i in 1:385){
if (a[i] <= 0.1)
{
b = c(b, a[i])
}
}
a[4]
str(bb)
bb = unclass(b)
names(b)
names(a)
names(model$coefficients)
names(model)
summary(model)
model$effects
prob = predict(model, data_Test2, type = 'response')
prob
#test set과 비교
idx = 1:92254
for (i in idx)
{
if (prob[i] >= 0.9)
{
prob[i] = 1
}
else
{
prob[i] = 0
}
}
data_Test2$TARGET
table(prob)
table(data_Test2$TARGET)
result <- table(data_Test2$TARGET, prob)
Precision <- result[4] / (result[3] + result[4])
Recall <- result[4] / (result[2] + result[4])
f.value <- 2 * (Precision * Recall) / (Precision + Recall)
f.value
cc <- c("BNK_LNIF_CNT" ,"SPART_LNIF_CNT","ECT_LNIF_CNT"
,"TOT_LNIF_AMT"
,"BNK_LNIF_AMT","CRDT_OCCR_MDIF"
,"SPTCT_OCCR_MDIF","CRDT_CARD_CNT", "CTCD_OCCR_MDIF"
,"OCCP_NAME_G", "HSHD_INFR_INCM", "LAST_CHLD_AGE" ,"MATE_JOB_INCM"
,"TOT_CRLN_AMT","TOT_CRLN_AMT"
,"TOT_REPY_AMT"
,"LT1Y_CLOD_RATE", "STRT_CRDT_GRAD"
,"LT1Y_PEOD_RATE", "STLN_REMN_AMT" ,"LT1Y_STLN_AMT"
,"GDINS_MON_PREM", "TOT_PREM" , "FMLY_TOT_PREM"
,"CNTT_LAMT_CNT" ,"FMLY_CLAM_CNT" , "AGE" , "SEX" , "AVG_CALL_FREQ"
,"TEL_MBSP_GRAD" , "MON_TLFE_AMT"
,"CBPT_MBSP_YN" , "MOBL_FATY_PRC" , "CRMM_OVDU_AMT"
,"TLFE_UNPD_CNT" ,"LT1Y_MXOD_AMT" ,"PAYM_METD" ,"PAYM_METD"
,"LINE_STUS" )
length(cc)
fol <- paste('TARGET ~', cc[1], sep='' )
for (i in 2:39){fol = paste(fol, cc[i], sep='+' )}
fol
model = glm(fol,data = data_Train2, family = binomial)