-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain1.cpp
107 lines (91 loc) · 3.12 KB
/
main1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "acor.h"
#include "data.h"
#include "evidence.h"
#include "exoplanetjd.h"
#include "int2str.h"
#include "model.h"
#include "preprocessors.h"
#include "quicksort.h"
#include "rng.h"
#include "sampling.h"
#include "sampling_DNest.h"
#include "uniformtest.h"
using namespace std;
void writechain (const Model & model,
const vector< vector<double> > & ensemble,
bool rep);
int main(void) {
time_t begin = time(NULL);
init_genrand(begin);
time_t end;
//string data_file_name("ploy_3_151_15_-12_9_-1"); size_t dim = 4;
//string data_file_name("ploy_1_10_5_10"); size_t dim = 2;
//string data_file_name("uni_2"); size_t dim = 2; size_t ens_size = 20; int num_level = 10; size_t step_size = 10;
//string data_file_name("uni_10"); size_t dim = 10; size_t ens_size = 50; int num_level = 40; size_t step_size = 100;
//string data_file_name("122"); size_t num_comp = 1; size_t ens_size = 150; int num_level = 90; size_t step_size = 10;
string data_file_name("122"); size_t num_comp = 2; size_t ens_size = 200; int num_level = 110; size_t step_size = 10;
//string data_file_name("122"); size_t num_comp = 3; size_t ens_size = 200; int num_level = 125; size_t step_size = 10; num_level = 1;
//string data_file_name("gliese_581"); size_t num_comp = 6; size_t ens_size = 200; int num_level = 150; size_t step_size = 10;
Data data(data_file_name);
string weight_type = "uniform";
ExoplanetJD model(data, num_comp, weight_type);
matrix ensemble;
model.init(ens_size, ensemble, 0.0000);
cout << model.LnLikelihood(ensemble[0]) << endl;
cout << model.LnDensity(ensemble[0]) << endl;
double ini = 0.00000001;
size_t burn_in_steps = 5000;
size_t chain_length = 50000;
bool succeed;
double a = 2;
size_t orbit_crossed = 0;
time_t b = time(NULL);
model.init(ens_size, ensemble, 0.01);
for (size_t i = 0; i < burn_in_steps; ++i) {
sampling(model, ensemble, step_size, a);
}
for (size_t i = 0; i < chain_length; ++i) {
sampling(model, ensemble, step_size, a);
//writechain(model, ensemble, 0);
for (size_t k = 0; k < ens_size; ++k) {
if (model.orbit_cross(ensemble[k])) {
++orbit_crossed;
}
}
}
cout << "Orbit Cross: " << orbit_crossed << endl;
cout << "Total : " << ens_size*chain_length << endl;
cout << "Prior Norm Change : " << log (1.0-(double)(orbit_crossed)/(double)(ens_size*chain_length)) << endl;
return 0;
}
void writechain (const Model & model,
const vector< vector<double> > & ensemble,
bool rep) {
vector<double> p(model.dim, 0);
fstream out(("chain_prior_0_" + model.model_name + ".txt").c_str(), ios::out | ios::app);
double LL;
for (size_t i = 0; i < ensemble.size(); ++i) {
//LL = model.LnLikelihood(ensemble[i]);
if (rep == 1) {
model.reparametrize(ensemble[i], p);
}
else {
p = ensemble[i];
}
for (int64_t j = 0; j < model.dim; ++j) {
out << setprecision(15) << p[j] << " ";
}
out << endl;
//if (i != ens_size - 1)
// out << endl;
}
}