-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.h
53 lines (49 loc) · 2.24 KB
/
model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
* Fengji Hou
* New York University
* Jan 27, 2013
* This header file declares the abstract base class Model.
* All models will be derivatives of this class.
* This class has some basic information about the model, i.e.
* dimension, prior, likelihood etc.
*
*/
#ifndef MODEL_H
#define MODEL_H
#include <cstdlib>
#include <string>
#include <vector>
#include "level.h"
class Model {
public:
Model(size_t dimension, // the dimension of the model's paramter space
std::string weight_type); // weight type for the level
Model(std::string weight_type); // weight type for the level
size_t dim; // dimension of the model's parameter space
std::vector<double> best_fit; // This vector is used to keep track of the best fit parameters
Level level; // constructor of level requires 'weight type'
std::string model_name; // name of the model, for output file names
std::string time_label; // the time when an object is made, used to label output files
std::vector<double> chain_LnLikelihood; // kuh mjieng si ngje
size_t total_num_visit;
std::vector<size_t> Level_Visits_T; // The visits to each level including burning phase
std::vector<size_t> Level_Visits; // The visits to each level
std::vector<size_t> Above_Visits; // The visits of the level above while visiting each level
std::vector<double> Quant_Ens_Mean; // above/visit mean of the ensemble, used to evaluate tau
// Threshold k+1, Quantizations[k]=1; otherwise, Quantizations[k]=0.
double evidence;
double evidence_r; // refined evidence
double evidence_err1; // error bar by integrand
double evidence_err2; // error bar by prior mass
double evidence_err3; // error bar by prior mass cross terms
virtual double reparametrize(const std::vector<double> &, std::vector<double> &) const = 0;
virtual double LnDensity(const std::vector<double> &) = 0;
virtual double LnDensity(const std::vector<double> &, const size_t) = 0;
virtual double LnLikelihood(const std::vector<double> &) = 0;
void clear_all_visits(void);
void clear_for_sampling(void);
virtual ~Model() {}
private:
};
#endif