generated from taichi-dev/voxel-challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderer.py
382 lines (322 loc) · 13.1 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import taichi as ti
from math_utils import (eps, inf, out_dir, ray_aabb_intersection)
MAX_RAY_DEPTH = 4
use_directional_light = True
DIS_LIMIT = 100
@ti.data_oriented
class Renderer:
def __init__(self, dx, image_res, up, voxel_edges, exposure=3):
self.image_res = image_res
self.aspect_ratio = image_res[0] / image_res[1]
self.vignette_strength = 0.9
self.vignette_radius = 0.0
self.vignette_center = [0.5, 0.5]
self.current_spp = 0
self.color_buffer = ti.Vector.field(3, dtype=ti.f32)
self.bbox = ti.Vector.field(3, dtype=ti.f32, shape=2)
self.fov = ti.field(dtype=ti.f32, shape=())
self.voxel_color = ti.Vector.field(3, dtype=ti.u8)
self.voxel_material = ti.field(dtype=ti.i8)
self.light_direction = ti.Vector.field(3, dtype=ti.f32, shape=())
self.light_direction_noise = ti.field(dtype=ti.f32, shape=())
self.light_color = ti.Vector.field(3, dtype=ti.f32, shape=())
self.cast_voxel_hit = ti.field(ti.i32, shape=())
self.cast_voxel_index = ti.Vector.field(3, ti.i32, shape=())
self.voxel_edges = voxel_edges
self.exposure = exposure
self.camera_pos = ti.Vector.field(3, dtype=ti.f32, shape=())
self.look_at = ti.Vector.field(3, dtype=ti.f32, shape=())
self.up = ti.Vector.field(3, dtype=ti.f32, shape=())
self.floor_height = ti.field(dtype=ti.f32, shape=())
self.floor_color = ti.Vector.field(3, dtype=ti.f32, shape=())
self.background_color = ti.Vector.field(3, dtype=ti.f32, shape=())
self.voxel_dx = dx
self.voxel_inv_dx = 1 / dx
# Note that voxel_inv_dx == voxel_grid_res iff the box has width = 1
self.voxel_grid_res = 128
voxel_grid_offset = [-self.voxel_grid_res // 2 for _ in range(3)]
ti.root.dense(ti.ij, image_res).place(self.color_buffer)
ti.root.dense(ti.ijk,
self.voxel_grid_res).place(self.voxel_color,
self.voxel_material,
offset=voxel_grid_offset)
self._rendered_image = ti.Vector.field(3, float, image_res)
self.set_up(*up)
self.set_fov(0.23)
self.floor_height[None] = 0
self.floor_color[None] = (1, 1, 1)
def set_directional_light(self, direction, light_direction_noise,
light_color):
direction_norm = (direction[0]**2 + direction[1]**2 +
direction[2]**2)**0.5
self.light_direction[None] = (direction[0] / direction_norm,
direction[1] / direction_norm,
direction[2] / direction_norm)
self.light_direction_noise[None] = light_direction_noise
self.light_color[None] = light_color
@ti.func
def inside_grid(self, ipos):
return ipos.min() >= -self.voxel_grid_res // 2 and ipos.max(
) < self.voxel_grid_res // 2
@ti.func
def query_density(self, ipos):
inside = self.inside_grid(ipos)
ret = 0.0
if inside:
ret = self.voxel_material[ipos]
else:
ret = 0.0
return ret
@ti.func
def _to_voxel_index(self, pos):
p = pos * self.voxel_inv_dx
voxel_index = ti.floor(p).cast(ti.i32)
return voxel_index
@ti.func
def voxel_surface_color(self, pos):
p = pos * self.voxel_inv_dx
p -= ti.floor(p)
voxel_index = self._to_voxel_index(pos)
boundary = self.voxel_edges
count = 0
for i in ti.static(range(3)):
if p[i] < boundary or p[i] > 1 - boundary:
count += 1
f = 0.0
if count >= 2:
f = 1.0
voxel_color = ti.Vector([0.0, 0.0, 0.0])
is_light = 0
if self.inside_particle_grid(voxel_index):
voxel_color = self.voxel_color[voxel_index] * (1.0 / 255)
if self.voxel_material[voxel_index] == 2:
is_light = 1
return voxel_color * (1.3 - 1.2 * f), is_light
@ti.func
def ray_march(self, p, d):
dist = inf
if d[1] < -eps:
dist = (self.floor_height[None] - p[1]) / d[1]
return dist
@ti.func
def sdf_normal(self, p):
return ti.Vector([0.0, 1.0, 0.0]) # up
@ti.func
def sdf_color(self, p):
return self.floor_color[None]
@ti.func
def dda_voxel(self, eye_pos, d):
for i in ti.static(range(3)):
if abs(d[i]) < 1e-6:
d[i] = 1e-6
rinv = 1.0 / d
rsign = ti.Vector([0, 0, 0])
for i in ti.static(range(3)):
if d[i] > 0:
rsign[i] = 1
else:
rsign[i] = -1
bbox_min = self.bbox[0]
bbox_max = self.bbox[1]
inter, near, far = ray_aabb_intersection(bbox_min, bbox_max, eye_pos,
d)
hit_distance = inf
hit_light = 0
normal = ti.Vector([0.0, 0.0, 0.0])
c = ti.Vector([0.0, 0.0, 0.0])
voxel_index = ti.Vector([0, 0, 0])
if inter:
near = max(0, near)
pos = eye_pos + d * (near + 5 * eps)
o = self.voxel_inv_dx * pos
ipos = int(ti.floor(o))
dis = (ipos - o + 0.5 + rsign * 0.5) * rinv
running = 1
i = 0
hit_pos = ti.Vector([0.0, 0.0, 0.0])
while running:
last_sample = int(self.query_density(ipos))
if not self.inside_particle_grid(ipos):
running = 0
if last_sample:
mini = (ipos - o + ti.Vector([0.5, 0.5, 0.5]) -
rsign * 0.5) * rinv
hit_distance = mini.max() * self.voxel_dx + near
hit_pos = eye_pos + (hit_distance + 1e-3) * d
voxel_index = self._to_voxel_index(hit_pos)
c, hit_light = self.voxel_surface_color(hit_pos)
running = 0
else:
mm = ti.Vector([0, 0, 0])
if dis[0] <= dis[1] and dis[0] < dis[2]:
mm[0] = 1
elif dis[1] <= dis[0] and dis[1] <= dis[2]:
mm[1] = 1
else:
mm[2] = 1
dis += mm * rsign * rinv
ipos += mm * rsign
normal = -mm * rsign
i += 1
return hit_distance, normal, c, hit_light, voxel_index
@ti.func
def inside_particle_grid(self, ipos):
pos = ipos * self.voxel_dx
return self.bbox[0][0] <= pos[0] and pos[0] < self.bbox[1][
0] and self.bbox[0][1] <= pos[1] and pos[1] < self.bbox[1][
1] and self.bbox[0][2] <= pos[2] and pos[2] < self.bbox[1][2]
@ti.func
def next_hit(self, pos, d, t):
closest = inf
normal = ti.Vector([0.0, 0.0, 0.0])
c = ti.Vector([0.0, 0.0, 0.0])
hit_light = 0
closest, normal, c, hit_light, vx_idx = self.dda_voxel(pos, d)
ray_march_dist = self.ray_march(pos, d)
if ray_march_dist < DIS_LIMIT and ray_march_dist < closest:
closest = ray_march_dist
normal = self.sdf_normal(pos + d * closest)
c = self.sdf_color(pos + d * closest)
# Highlight the selected voxel
if self.cast_voxel_hit[None]:
cast_vx_idx = self.cast_voxel_index[None]
if all(cast_vx_idx == vx_idx):
c = ti.Vector([1.0, 0.65, 0.0])
# For light sources, we actually invert the material to make it
# more obvious
hit_light = 1 - hit_light
return closest, normal, c, hit_light
@ti.kernel
def set_camera_pos(self, x: ti.f32, y: ti.f32, z: ti.f32):
self.camera_pos[None] = ti.Vector([x, y, z])
@ti.kernel
def set_up(self, x: ti.f32, y: ti.f32, z: ti.f32):
self.up[None] = ti.Vector([x, y, z]).normalized()
@ti.kernel
def set_look_at(self, x: ti.f32, y: ti.f32, z: ti.f32):
self.look_at[None] = ti.Vector([x, y, z])
@ti.kernel
def set_fov(self, fov: ti.f32):
self.fov[None] = fov
@ti.func
def get_cast_dir(self, u, v):
fov = self.fov[None]
d = (self.look_at[None] - self.camera_pos[None]).normalized()
fu = (2 * fov * (u + ti.random(ti.f32)) / self.image_res[1] -
fov * self.aspect_ratio - 1e-5)
fv = 2 * fov * (v + ti.random(ti.f32)) / self.image_res[1] - fov - 1e-5
du = d.cross(self.up[None]).normalized()
dv = du.cross(d).normalized()
d = (d + fu * du + fv * dv).normalized()
return d
@ti.kernel
def render(self):
ti.loop_config(block_dim=256)
for u, v in self.color_buffer:
d = self.get_cast_dir(u, v)
pos = self.camera_pos[None]
t = 0.0
contrib = ti.Vector([0.0, 0.0, 0.0])
throughput = ti.Vector([1.0, 1.0, 1.0])
c = ti.Vector([1.0, 1.0, 1.0])
depth = 0
hit_light = 0
hit_background = 0
# Tracing begin
for bounce in range(MAX_RAY_DEPTH):
depth += 1
closest, normal, c, hit_light = self.next_hit(pos, d, t)
hit_pos = pos + closest * d
if not hit_light and normal.norm() != 0 and closest < 1e8:
d = out_dir(normal)
pos = hit_pos + 1e-4 * d
throughput *= c
if ti.static(use_directional_light):
dir_noise = ti.Vector([
ti.random() - 0.5,
ti.random() - 0.5,
ti.random() - 0.5
]) * self.light_direction_noise[None]
light_dir = (self.light_direction[None] +
dir_noise).normalized()
dot = light_dir.dot(normal)
if dot > 0:
hit_light_ = 0
dist, _, _, hit_light_ = self.next_hit(
pos, light_dir, t)
if dist > DIS_LIMIT:
# far enough to hit directional light
contrib += throughput * \
self.light_color[None] * dot
else: # hit background or light voxel, terminate tracing
hit_background = 1
break
# Russian roulette
max_c = throughput.max()
if ti.random() > max_c:
throughput = [0, 0, 0]
break
else:
throughput /= max_c
# Tracing end
if hit_light:
contrib += throughput * c
else:
if depth == 1 and hit_background:
# Direct hit to background
contrib = self.background_color[None]
self.color_buffer[u, v] += contrib
@ti.kernel
def _render_to_image(self, samples: ti.i32):
for i, j in self.color_buffer:
u = 1.0 * i / self.image_res[0]
v = 1.0 * j / self.image_res[1]
darken = 1.0 - self.vignette_strength * max((ti.sqrt(
(u - self.vignette_center[0])**2 +
(v - self.vignette_center[1])**2) - self.vignette_radius), 0)
for c in ti.static(range(3)):
self._rendered_image[i, j][c] = ti.sqrt(
self.color_buffer[i, j][c] * darken * self.exposure /
samples)
@ti.kernel
def recompute_bbox(self):
for d in ti.static(range(3)):
self.bbox[0][d] = 1e9
self.bbox[1][d] = -1e9
for I in ti.grouped(self.voxel_material):
if self.voxel_material[I] != 0:
for d in ti.static(range(3)):
ti.atomic_min(self.bbox[0][d], (I[d] - 1) * self.voxel_dx)
ti.atomic_max(self.bbox[1][d], (I[d] + 2) * self.voxel_dx)
def reset_framebuffer(self):
self.current_spp = 0
self.color_buffer.fill(0)
def accumulate(self):
self.render()
self.current_spp += 1
def fetch_image(self):
self._render_to_image(self.current_spp)
return self._rendered_image
@staticmethod
@ti.func
def to_vec3u(c):
r = ti.Vector([ti.u8(0), ti.u8(0), ti.u8(0)])
for i in ti.static(range(3)):
r[i] = ti.cast(c[i] * 255, ti.u8)
return r
@staticmethod
@ti.func
def to_vec3(c):
r = ti.Vector([0.0, 0.0, 0.0])
for i in ti.static(range(3)):
r[i] = ti.cast(c[i], ti.f32) / 255.0
return r
@ti.func
def set_voxel(self, idx, mat, color):
self.voxel_material[idx] = mat
self.voxel_color[idx] = self.to_vec3u(color)
@ti.func
def get_voxel(self, ijk):
mat = self.voxel_material[ijk]
color = self.voxel_color[ijk]
return mat, self.to_vec3(color)