-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmain.py
181 lines (157 loc) · 8.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import cv2
import numpy as np
import math
import argparse
class YOLOv8_face:
def __init__(self, path, conf_thres=0.2, iou_thres=0.5):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
self.class_names = ['face']
self.num_classes = len(self.class_names)
# Initialize model
self.net = cv2.dnn.readNet(path)
self.input_height = 640
self.input_width = 640
self.reg_max = 16
self.project = np.arange(self.reg_max)
self.strides = (8, 16, 32)
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
self.anchors = self.make_anchors(self.feats_hw)
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points = {}
for i, stride in enumerate(self.strides):
h,w = feats_hw[i]
x = np.arange(0, w) + grid_cell_offset # shift x
y = np.arange(0, h) + grid_cell_offset # shift y
sx, sy = np.meshgrid(x, y)
# sy, sx = np.meshgrid(y, x)
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
return anchor_points
def softmax(self, x, axis=1):
x_exp = np.exp(x)
# 如果是列向量,则axis=0
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def resize_image(self, srcimg, keep_ratio=True):
top, left, newh, neww = 0, 0, self.input_width, self.input_height
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.input_height, int(self.input_width / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
left = int((self.input_width - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
value=(0, 0, 0)) # add border
else:
newh, neww = int(self.input_height * hw_scale), self.input_width
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
top = int((self.input_height - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
value=(0, 0, 0))
else:
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
return img, newh, neww, top, left
def detect(self, srcimg):
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
input_img = input_img.astype(np.float32) / 255.0
blob = cv2.dnn.blobFromImage(input_img)
self.net.setInput(blob)
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# if isinstance(outputs, tuple):
# outputs = list(outputs)
# if float(cv2.__version__[:3])>=4.7:
# outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步,opencv4.5不需要
# Perform inference on the image
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
return det_bboxes, det_conf, det_classid, landmarks
def post_process(self, preds, scale_h, scale_w, padh, padw):
bboxes, scores, landmarks = [], [], []
for i, pred in enumerate(preds):
stride = int(self.input_height/pred.shape[2])
pred = pred.transpose((0, 2, 3, 1))
box = pred[..., :self.reg_max * 4]
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5
# tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
tmp = box.reshape(-1, 4, self.reg_max)
bbox_pred = self.softmax(tmp, axis=-1)
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))
bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))
bboxes.append(bbox)
scores.append(cls)
landmarks.append(kpts)
bboxes = np.concatenate(bboxes, axis=0)
scores = np.concatenate(scores, axis=0)
landmarks = np.concatenate(landmarks, axis=0)
bboxes_wh = bboxes.copy()
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh
classIds = np.argmax(scores, axis=1)
confidences = np.max(scores, axis=1) ####max_class_confidence
mask = confidences>self.conf_threshold
bboxes_wh = bboxes_wh[mask] ###合理使用广播法则
confidences = confidences[mask]
classIds = classIds[mask]
landmarks = landmarks[mask]
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
self.iou_threshold).flatten()
if len(indices) > 0:
mlvl_bboxes = bboxes_wh[indices]
confidences = confidences[indices]
classIds = classIds[indices]
landmarks = landmarks[indices]
return mlvl_bboxes, confidences, classIds, landmarks
else:
print('nothing detect')
return np.array([]), np.array([]), np.array([]), np.array([])
def distance2bbox(self, points, distance, max_shape=None):
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = np.clip(x1, 0, max_shape[1])
y1 = np.clip(y1, 0, max_shape[0])
x2 = np.clip(x2, 0, max_shape[1])
y2 = np.clip(y2, 0, max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def draw_detections(self, image, boxes, scores, kpts):
for box, score, kp in zip(boxes, scores, kpts):
x, y, w, h = box.astype(int)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
for i in range(5):
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imgpath', type=str, default='images/2.jpg', help="image path")
parser.add_argument('--modelpath', type=str, default='weights/yolov8n-face.onnx',
help="onnx filepath")
parser.add_argument('--confThreshold', default=0.45, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
args = parser.parse_args()
# Initialize YOLOv8_face object detector
YOLOv8_face_detector = YOLOv8_face(args.modelpath, conf_thres=args.confThreshold, iou_thres=args.nmsThreshold)
srcimg = cv2.imread(args.imgpath)
# Detect Objects
boxes, scores, classids, kpts = YOLOv8_face_detector.detect(srcimg)
# Draw detections
dstimg = YOLOv8_face_detector.draw_detections(srcimg, boxes, scores, kpts)
#cv2.imwrite('result.jpg', dstimg)
winName = 'Deep learning face detection use OpenCV'
cv2.namedWindow(winName, 0)
cv2.imshow(winName, dstimg)
cv2.waitKey(0)
cv2.destroyAllWindows()